File size: 2,346 Bytes
ac734e5
 
5e03bd0
 
 
ac734e5
5e03bd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b781134
5e03bd0
 
 
 
d722f07
5e03bd0
99fb798
5e03bd0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import gradio as gr

import torch
import re
from transformers import DonutProcessor, VisionEncoderDecoderModel

def load_and_preprocess_image(image, processor):
    """
    Load an image and preprocess it for the model.
    """
    pixel_values = processor(image, return_tensors="pt").pixel_values
    return pixel_values

def generate_text_from_image(model, image, processor, device):
    """
    Generate text from an image using the trained model.
    """
    # Load and preprocess the image
    pixel_values = load_and_preprocess_image(image, processor)
    pixel_values = pixel_values.to(device)

    # Generate output using model
    model.eval()
    with torch.no_grad():
        task_prompt = "<s_receipt>" # <s_cord-v2> for v1
        decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
        decoder_input_ids = decoder_input_ids.to(device)
        generated_outputs = model.generate(
            pixel_values,
            decoder_input_ids=decoder_input_ids,
            max_length=model.decoder.config.max_position_embeddings, 
            pad_token_id=processor.tokenizer.pad_token_id,
            eos_token_id=processor.tokenizer.eos_token_id,
            early_stopping=True,
            bad_words_ids=[[processor.tokenizer.unk_token_id]],
            return_dict_in_generate=True
        )

    # Decode generated output
    decoded_text = processor.batch_decode(generated_outputs.sequences)[0]
    decoded_text = decoded_text.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
    decoded_text = re.sub(r"<.*?>", "", decoded_text, count=1).strip()  # remove first task start token
    decoded_text = processor.token2json(decoded_text)
    return decoded_text


device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
processor = DonutProcessor.from_pretrained("AdamCodd/donut-receipts-extract")
model = VisionEncoderDecoderModel.from_pretrained("AdamCodd/donut-receipts-extract")
model.to(device)


def process_image(image):
    extracted_text = generate_text_from_image(model, image, processor, device)
    print("Extracted Text:", extracted_text)
    return extracted_text


image = gr.Image(type='pil')
label = gr.JSON()

intf = gr.Interface(fn=process_image, inputs=image, outputs=label)
intf.launch(inline=False)