|
import spaces |
|
import random |
|
import torch |
|
import cv2 |
|
import insightface |
|
import gradio as gr |
|
import numpy as np |
|
import os |
|
from huggingface_hub import snapshot_download |
|
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor |
|
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline |
|
from kolors.models.modeling_chatglm import ChatGLMModel |
|
from kolors.models.tokenization_chatglm import ChatGLMTokenizer |
|
from diffusers import AutoencoderKL |
|
from kolors.models.unet_2d_condition import UNet2DConditionModel |
|
from diffusers import EulerDiscreteScheduler |
|
from PIL import Image |
|
from insightface.app import FaceAnalysis |
|
from insightface.data import get_image as ins_get_image |
|
|
|
|
|
device = "cuda" |
|
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") |
|
ckpt_dir_faceid = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus") |
|
|
|
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) |
|
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') |
|
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) |
|
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") |
|
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) |
|
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_faceid}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True) |
|
clip_image_encoder.to(device) |
|
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336) |
|
|
|
pipe = StableDiffusionXLPipeline( |
|
vae = vae, |
|
text_encoder = text_encoder, |
|
tokenizer = tokenizer, |
|
unet = unet, |
|
scheduler = scheduler, |
|
face_clip_encoder = clip_image_encoder, |
|
face_clip_processor = clip_image_processor, |
|
force_zeros_for_empty_prompt = False, |
|
) |
|
|
|
class FaceInfoGenerator(): |
|
def __init__(self, root_dir = "./.insightface/"): |
|
self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) |
|
self.app.prepare(ctx_id = 0, det_size = (640, 640)) |
|
|
|
def get_faceinfo_one_img(self, face_image): |
|
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) |
|
|
|
if len(face_info) == 0: |
|
face_info = None |
|
else: |
|
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] |
|
return face_info |
|
|
|
def face_bbox_to_square(bbox): |
|
|
|
l,t,r,b = bbox |
|
cent_x = (l + r) / 2 |
|
cent_y = (t + b) / 2 |
|
w, h = r - l, b - t |
|
r = max(w, h) / 2 |
|
|
|
l0 = cent_x - r |
|
r0 = cent_x + r |
|
t0 = cent_y - r |
|
b0 = cent_y + r |
|
|
|
return [l0, t0, r0, b0] |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
face_info_generator = FaceInfoGenerator() |
|
|
|
@spaces.GPU |
|
def infer(prompt, |
|
image = None, |
|
negative_prompt = "low quality", |
|
seed = 66, |
|
randomize_seed = False, |
|
guidance_scale = 5.0, |
|
num_inference_steps = 50 |
|
): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed) |
|
global pipe |
|
pipe = pipe.to(device) |
|
pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device = device) |
|
scale = 0.8 |
|
pipe.set_face_fidelity_scale(scale) |
|
|
|
face_info = face_info_generator.get_faceinfo_one_img(image) |
|
face_bbox_square = face_bbox_to_square(face_info["bbox"]) |
|
crop_image = image.crop(face_bbox_square) |
|
crop_image = crop_image.resize((336, 336)) |
|
crop_image = [crop_image] |
|
face_embeds = torch.from_numpy(np.array([face_info["embedding"]])) |
|
face_embeds = face_embeds.to(device, dtype = torch.float16) |
|
|
|
image = pipe( |
|
prompt = prompt, |
|
negative_prompt = negative_prompt, |
|
height = 1024, |
|
width = 1024, |
|
num_inference_steps= num_inference_steps, |
|
guidance_scale = guidance_scale, |
|
num_images_per_prompt = 1, |
|
generator = generator, |
|
face_crop_image = crop_image, |
|
face_insightface_embeds = face_embeds |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
|
|
|
|
|
|
css = """ |
|
footer { |
|
visibility: hidden; |
|
} |
|
""" |
|
|
|
|
|
|
|
def load_description(fp): |
|
with open(fp, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
return content |
|
|
|
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as Kolors: |
|
with gr.Row(): |
|
with gr.Column(elem_id="col-left"): |
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
placeholder="Enter your prompt", |
|
lines=2 |
|
) |
|
with gr.Row(): |
|
image = gr.Image(label="Image", type="pil") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
placeholder="Enter a negative prompt", |
|
visible=True, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=5.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=10, |
|
maximum=50, |
|
step=1, |
|
value=25, |
|
) |
|
with gr.Row(): |
|
button = gr.Button("Run", elem_id="button") |
|
|
|
with gr.Column(elem_id="col-right"): |
|
result = gr.Image(label="Result", show_label=False) |
|
seed_used = gr.Number(label="Seed Used") |
|
|
|
|
|
|
|
button.click( |
|
fn = infer, |
|
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps], |
|
outputs = [result, seed_used] |
|
) |
|
|
|
|
|
Kolors.queue().launch(debug=True) |
|
|