|
|
|
|
|
|
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
|
|
from einops import rearrange |
|
from .api import MiDaSInference |
|
|
|
|
|
class MidasDetector: |
|
def __init__(self): |
|
self.model = MiDaSInference(model_type="dpt_hybrid").cuda() |
|
self.rng = np.random.RandomState(0) |
|
|
|
def __call__(self, input_image): |
|
assert input_image.ndim == 3 |
|
image_depth = input_image |
|
with torch.no_grad(): |
|
image_depth = torch.from_numpy(image_depth).float().cuda() |
|
image_depth = image_depth / 127.5 - 1.0 |
|
image_depth = rearrange(image_depth, 'h w c -> 1 c h w') |
|
depth = self.model(image_depth)[0] |
|
|
|
depth -= torch.min(depth) |
|
depth /= torch.max(depth) |
|
depth = depth.cpu().numpy() |
|
depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8) |
|
|
|
return depth_image |
|
|
|
|
|
|
|
|