|
|
|
import importlib |
|
import numpy as np |
|
import os |
|
import re |
|
import subprocess |
|
import sys |
|
from collections import defaultdict |
|
import PIL |
|
import torch |
|
import torchvision |
|
from tabulate import tabulate |
|
|
|
__all__ = ["collect_env_info"] |
|
|
|
|
|
def collect_torch_env(): |
|
try: |
|
import torch.__config__ |
|
|
|
return torch.__config__.show() |
|
except ImportError: |
|
|
|
from torch.utils.collect_env import get_pretty_env_info |
|
|
|
return get_pretty_env_info() |
|
|
|
|
|
def get_env_module(): |
|
var_name = "DETECTRON2_ENV_MODULE" |
|
return var_name, os.environ.get(var_name, "<not set>") |
|
|
|
|
|
def detect_compute_compatibility(CUDA_HOME, so_file): |
|
try: |
|
cuobjdump = os.path.join(CUDA_HOME, "bin", "cuobjdump") |
|
if os.path.isfile(cuobjdump): |
|
output = subprocess.check_output( |
|
"'{}' --list-elf '{}'".format(cuobjdump, so_file), shell=True |
|
) |
|
output = output.decode("utf-8").strip().split("\n") |
|
arch = [] |
|
for line in output: |
|
line = re.findall(r"\.sm_([0-9]*)\.", line)[0] |
|
arch.append(".".join(line)) |
|
arch = sorted(set(arch)) |
|
return ", ".join(arch) |
|
else: |
|
return so_file + "; cannot find cuobjdump" |
|
except Exception: |
|
|
|
return so_file |
|
|
|
|
|
def collect_env_info(): |
|
has_gpu = torch.cuda.is_available() |
|
torch_version = torch.__version__ |
|
|
|
|
|
from torch.utils.cpp_extension import CUDA_HOME, ROCM_HOME |
|
|
|
has_rocm = False |
|
if (getattr(torch.version, "hip", None) is not None) and (ROCM_HOME is not None): |
|
has_rocm = True |
|
has_cuda = has_gpu and (not has_rocm) |
|
|
|
data = [] |
|
data.append(("sys.platform", sys.platform)) |
|
data.append(("Python", sys.version.replace("\n", ""))) |
|
data.append(("numpy", np.__version__)) |
|
|
|
try: |
|
import detectron2 |
|
|
|
data.append( |
|
( |
|
"detectron2", |
|
detectron2.__version__ + " @" + os.path.dirname(detectron2.__file__), |
|
) |
|
) |
|
except ImportError: |
|
data.append(("detectron2", "failed to import")) |
|
except AttributeError: |
|
data.append(("detectron2", "imported a wrong installation")) |
|
|
|
try: |
|
import detectron2._C as _C |
|
except ImportError as e: |
|
data.append(("detectron2._C", f"not built correctly: {e}")) |
|
|
|
|
|
if sys.platform != "win32": |
|
try: |
|
|
|
cxx = os.environ.get("CXX", "c++") |
|
cxx = subprocess.check_output("'{}' --version".format(cxx), shell=True) |
|
cxx = cxx.decode("utf-8").strip().split("\n")[0] |
|
except subprocess.SubprocessError: |
|
cxx = "Not found" |
|
data.append(("Compiler ($CXX)", cxx)) |
|
|
|
if has_cuda and CUDA_HOME is not None: |
|
try: |
|
nvcc = os.path.join(CUDA_HOME, "bin", "nvcc") |
|
nvcc = subprocess.check_output("'{}' -V".format(nvcc), shell=True) |
|
nvcc = nvcc.decode("utf-8").strip().split("\n")[-1] |
|
except subprocess.SubprocessError: |
|
nvcc = "Not found" |
|
data.append(("CUDA compiler", nvcc)) |
|
if has_cuda and sys.platform != "win32": |
|
try: |
|
so_file = importlib.util.find_spec("detectron2._C").origin |
|
except (ImportError, AttributeError): |
|
pass |
|
else: |
|
data.append( |
|
( |
|
"detectron2 arch flags", |
|
detect_compute_compatibility(CUDA_HOME, so_file), |
|
) |
|
) |
|
else: |
|
|
|
data.append(("Compiler", _C.get_compiler_version())) |
|
data.append(("CUDA compiler", _C.get_cuda_version())) |
|
if has_cuda and getattr(_C, "has_cuda", lambda: True)(): |
|
data.append( |
|
( |
|
"detectron2 arch flags", |
|
detect_compute_compatibility(CUDA_HOME, _C.__file__), |
|
) |
|
) |
|
|
|
data.append(get_env_module()) |
|
data.append(("PyTorch", torch_version + " @" + os.path.dirname(torch.__file__))) |
|
data.append(("PyTorch debug build", torch.version.debug)) |
|
try: |
|
data.append(("torch._C._GLIBCXX_USE_CXX11_ABI", torch._C._GLIBCXX_USE_CXX11_ABI)) |
|
except Exception: |
|
pass |
|
|
|
if not has_gpu: |
|
has_gpu_text = "No: torch.cuda.is_available() == False" |
|
else: |
|
has_gpu_text = "Yes" |
|
data.append(("GPU available", has_gpu_text)) |
|
if has_gpu: |
|
devices = defaultdict(list) |
|
for k in range(torch.cuda.device_count()): |
|
cap = ".".join((str(x) for x in torch.cuda.get_device_capability(k))) |
|
name = torch.cuda.get_device_name(k) + f" (arch={cap})" |
|
devices[name].append(str(k)) |
|
for name, devids in devices.items(): |
|
data.append(("GPU " + ",".join(devids), name)) |
|
|
|
if has_rocm: |
|
msg = " - invalid!" if not (ROCM_HOME and os.path.isdir(ROCM_HOME)) else "" |
|
data.append(("ROCM_HOME", str(ROCM_HOME) + msg)) |
|
else: |
|
try: |
|
from torch.utils.collect_env import ( |
|
get_nvidia_driver_version, |
|
run as _run, |
|
) |
|
|
|
data.append(("Driver version", get_nvidia_driver_version(_run))) |
|
except Exception: |
|
pass |
|
msg = " - invalid!" if not (CUDA_HOME and os.path.isdir(CUDA_HOME)) else "" |
|
data.append(("CUDA_HOME", str(CUDA_HOME) + msg)) |
|
|
|
cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None) |
|
if cuda_arch_list: |
|
data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list)) |
|
data.append(("Pillow", PIL.__version__)) |
|
|
|
try: |
|
data.append( |
|
( |
|
"torchvision", |
|
str(torchvision.__version__) + " @" + os.path.dirname(torchvision.__file__), |
|
) |
|
) |
|
if has_cuda: |
|
try: |
|
torchvision_C = importlib.util.find_spec("torchvision._C").origin |
|
msg = detect_compute_compatibility(CUDA_HOME, torchvision_C) |
|
data.append(("torchvision arch flags", msg)) |
|
except (ImportError, AttributeError): |
|
data.append(("torchvision._C", "Not found")) |
|
except AttributeError: |
|
data.append(("torchvision", "unknown")) |
|
|
|
try: |
|
import fvcore |
|
|
|
data.append(("fvcore", fvcore.__version__)) |
|
except (ImportError, AttributeError): |
|
pass |
|
|
|
try: |
|
import iopath |
|
|
|
data.append(("iopath", iopath.__version__)) |
|
except (ImportError, AttributeError): |
|
pass |
|
|
|
try: |
|
import cv2 |
|
|
|
data.append(("cv2", cv2.__version__)) |
|
except (ImportError, AttributeError): |
|
data.append(("cv2", "Not found")) |
|
env_str = tabulate(data) + "\n" |
|
env_str += collect_torch_env() |
|
return env_str |
|
|
|
|
|
def test_nccl_ops(): |
|
num_gpu = torch.cuda.device_count() |
|
if os.access("/tmp", os.W_OK): |
|
import torch.multiprocessing as mp |
|
|
|
dist_url = "file:///tmp/nccl_tmp_file" |
|
print("Testing NCCL connectivity ... this should not hang.") |
|
mp.spawn(_test_nccl_worker, nprocs=num_gpu, args=(num_gpu, dist_url), daemon=False) |
|
print("NCCL succeeded.") |
|
|
|
|
|
def _test_nccl_worker(rank, num_gpu, dist_url): |
|
import torch.distributed as dist |
|
|
|
dist.init_process_group(backend="NCCL", init_method=dist_url, rank=rank, world_size=num_gpu) |
|
dist.barrier(device_ids=[rank]) |
|
|
|
|
|
def main() -> None: |
|
global x |
|
try: |
|
from detectron2.utils.collect_env import collect_env_info as f |
|
|
|
print(f()) |
|
except ImportError: |
|
print(collect_env_info()) |
|
|
|
if torch.cuda.is_available(): |
|
num_gpu = torch.cuda.device_count() |
|
for k in range(num_gpu): |
|
device = f"cuda:{k}" |
|
try: |
|
x = torch.tensor([1, 2.0], dtype=torch.float32) |
|
x = x.to(device) |
|
except Exception as e: |
|
print( |
|
f"Unable to copy tensor to device={device}: {e}. " |
|
"Your CUDA environment is broken." |
|
) |
|
if num_gpu > 1: |
|
test_nccl_ops() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|