AudioLlama / mmaudio /ext /rotary_embeddings.py
Rex Cheng
initial commit
dbac20f
from typing import Union
import torch
from einops import rearrange
from torch import Tensor
# Ref: https://github.com/black-forest-labs/flux/blob/main/src/flux/math.py
# Ref: https://github.com/lucidrains/rotary-embedding-torch
def compute_rope_rotations(length: int,
dim: int,
theta: int,
*,
freq_scaling: float = 1.0,
device: Union[torch.device, str] = 'cpu') -> Tensor:
assert dim % 2 == 0
with torch.amp.autocast(device_type='cuda', enabled=False):
pos = torch.arange(length, dtype=torch.float32, device=device)
freqs = 1.0 / (theta**(torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim))
freqs *= freq_scaling
rot = torch.einsum('..., f -> ... f', pos, freqs)
rot = torch.stack([torch.cos(rot), -torch.sin(rot), torch.sin(rot), torch.cos(rot)], dim=-1)
rot = rearrange(rot, 'n d (i j) -> 1 n d i j', i=2, j=2)
return rot
def apply_rope(x: Tensor, rot: Tensor) -> tuple[Tensor, Tensor]:
with torch.amp.autocast(device_type='cuda', enabled=False):
_x = x.float()
_x = _x.view(*_x.shape[:-1], -1, 1, 2)
x_out = rot[..., 0] * _x[..., 0] + rot[..., 1] * _x[..., 1]
return x_out.reshape(*x.shape).to(dtype=x.dtype)