Spaces:
Runtime error
Runtime error
TakahashiShotaro
commited on
Commit
·
2074ae5
1
Parent(s):
11edfba
Update models.py
Browse files
models.py
CHANGED
@@ -14,19 +14,29 @@ from diffusers import ControlNetModel, UniPCMultistepScheduler
|
|
14 |
|
15 |
from config import WIDTH, HEIGHT
|
16 |
from palette import ade_palette
|
17 |
-
from stable_diffusion_controlnet_inpaint_img2img import
|
|
|
|
|
18 |
from helpers import flush, postprocess_image_masking, convolution
|
19 |
-
from pipelines import
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
LOGGING = logging.getLogger(__name__)
|
22 |
|
23 |
|
24 |
@torch.inference_mode()
|
25 |
-
def make_image_controlnet(
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
30 |
"""Method to make image using controlnet
|
31 |
Args:
|
32 |
image (np.ndarray): input image
|
@@ -43,22 +53,25 @@ def make_image_controlnet(image: np.ndarray,
|
|
43 |
flush()
|
44 |
|
45 |
image = Image.fromarray(image).convert("RGB")
|
46 |
-
controlnet_conditioning_image = Image.fromarray(
|
|
|
|
|
|
|
|
|
47 |
mask_image = Image.fromarray((mask_image * 255).astype(np.uint8)).convert("RGB")
|
48 |
mask_image_postproc = convolution(mask_image)
|
49 |
|
50 |
-
|
51 |
-
st.success(f"{pipe.queue_size} images in the queue, can take up to {(pipe.queue_size+1) * 10} seconds")
|
52 |
generated_image = pipe(
|
53 |
prompt=positive_prompt,
|
54 |
negative_prompt=negative_prompt,
|
55 |
num_inference_steps=50,
|
56 |
strength=1.00,
|
57 |
guidance_scale=7.0,
|
58 |
-
generator=
|
59 |
image=image,
|
60 |
mask_image=mask_image,
|
61 |
-
controlnet_conditioning_image=controlnet_conditioning_image
|
62 |
).images[0]
|
63 |
generated_image = postprocess_image_masking(generated_image, image, mask_image_postproc)
|
64 |
|
@@ -66,10 +79,12 @@ def make_image_controlnet(image: np.ndarray,
|
|
66 |
|
67 |
|
68 |
@torch.inference_mode()
|
69 |
-
def make_inpainting(
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
73 |
"""Method to make inpainting
|
74 |
Args:
|
75 |
positive_prompt (str): positive prompt string
|
@@ -84,15 +99,20 @@ def make_inpainting(positive_prompt: str,
|
|
84 |
mask_image_postproc = convolution(mask_image)
|
85 |
|
86 |
flush()
|
87 |
-
st.success(
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
return generated_image
|
|
|
14 |
|
15 |
from config import WIDTH, HEIGHT
|
16 |
from palette import ade_palette
|
17 |
+
from stable_diffusion_controlnet_inpaint_img2img import (
|
18 |
+
StableDiffusionControlNetInpaintImg2ImgPipeline,
|
19 |
+
)
|
20 |
from helpers import flush, postprocess_image_masking, convolution
|
21 |
+
from pipelines import (
|
22 |
+
ControlNetPipeline,
|
23 |
+
SDPipeline,
|
24 |
+
get_inpainting_pipeline,
|
25 |
+
get_controlnet,
|
26 |
+
)
|
27 |
|
28 |
LOGGING = logging.getLogger(__name__)
|
29 |
|
30 |
|
31 |
@torch.inference_mode()
|
32 |
+
def make_image_controlnet(
|
33 |
+
image: np.ndarray,
|
34 |
+
mask_image: np.ndarray,
|
35 |
+
controlnet_conditioning_image: np.ndarray,
|
36 |
+
positive_prompt: str,
|
37 |
+
negative_prompt: str,
|
38 |
+
seed: int = 2356132,
|
39 |
+
) -> List[Image.Image]:
|
40 |
"""Method to make image using controlnet
|
41 |
Args:
|
42 |
image (np.ndarray): input image
|
|
|
53 |
flush()
|
54 |
|
55 |
image = Image.fromarray(image).convert("RGB")
|
56 |
+
controlnet_conditioning_image = Image.fromarray(
|
57 |
+
controlnet_conditioning_image
|
58 |
+
).convert(
|
59 |
+
"RGB"
|
60 |
+
) # .filter(ImageFilter.GaussianBlur(radius = 9))
|
61 |
mask_image = Image.fromarray((mask_image * 255).astype(np.uint8)).convert("RGB")
|
62 |
mask_image_postproc = convolution(mask_image)
|
63 |
|
64 |
+
# st.success(f"{pipe.queue_size} images in the queue, can take up to {(pipe.queue_size+1) * 10} seconds")
|
|
|
65 |
generated_image = pipe(
|
66 |
prompt=positive_prompt,
|
67 |
negative_prompt=negative_prompt,
|
68 |
num_inference_steps=50,
|
69 |
strength=1.00,
|
70 |
guidance_scale=7.0,
|
71 |
+
generator=torch.Generator(device="cuda").manual_seed(seed),
|
72 |
image=image,
|
73 |
mask_image=mask_image,
|
74 |
+
controlnet_conditioning_image=controlnet_conditioning_image
|
75 |
).images[0]
|
76 |
generated_image = postprocess_image_masking(generated_image, image, mask_image_postproc)
|
77 |
|
|
|
79 |
|
80 |
|
81 |
@torch.inference_mode()
|
82 |
+
def make_inpainting(
|
83 |
+
positive_prompt: str,
|
84 |
+
image: Image,
|
85 |
+
mask_image: np.ndarray,
|
86 |
+
negative_prompt: str = "",
|
87 |
+
) -> List[Image.Image]:
|
88 |
"""Method to make inpainting
|
89 |
Args:
|
90 |
positive_prompt (str): positive prompt string
|
|
|
99 |
mask_image_postproc = convolution(mask_image)
|
100 |
|
101 |
flush()
|
102 |
+
st.success(
|
103 |
+
f"{pipe.queue_size} images in the queue, can take up to {(pipe.queue_size+1) * 10} seconds"
|
104 |
+
)
|
105 |
+
generated_image = pipe(
|
106 |
+
image=image,
|
107 |
+
mask_image=mask_image,
|
108 |
+
prompt=positive_prompt,
|
109 |
+
negative_prompt=negative_prompt,
|
110 |
+
num_inference_steps=50,
|
111 |
+
height=HEIGHT,
|
112 |
+
width=WIDTH,
|
113 |
+
).images[0]
|
114 |
+
generated_image = postprocess_image_masking(
|
115 |
+
generated_image, image, mask_image_postproc
|
116 |
+
)
|
117 |
|
118 |
return generated_image
|