Spaces:
Runtime error
Runtime error
okaris
commited on
Commit
·
bae258c
1
Parent(s):
d31709b
Release Omni-Zero
Browse files- README.md +2 -1
- omni_zero.py +64 -1
- utils.py +68 -2
README.md
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
# Omni-Zero: A diffusion pipeline for zero-shot stylized portrait creation.
|
2 |
- [x] Release single person code
|
3 |
- [ ] Release couples code
|
|
|
4 |
|
5 |
## Use Omni-Zero in [fal.ai](https://fal.ai) Workflows [https://fal.ai/dashboard/workflows/okaris/omni-zero](https://fal.ai/dashboard/workflows/okaris/omni-zero)
|
6 |
![Omni-Zero](https://github.com/okaris/omni-zero/assets/1448702/2ccbdf24-eb41-4a85-975e-af701fc4a879)
|
@@ -26,4 +27,4 @@ python demo.py
|
|
26 |
- Special thanks to [fal.ai](https://fal.ai) for providing compute for the research and hosting
|
27 |
- This project wouldn't be possible without the great work of the [InstantX Team](https://github.com/InstantID)
|
28 |
- Thanks to [@fofrAI](http://twitter.com/fofrAI) for inspiring me with his [face-to-many workflow](https://github.com/fofr/cog-face-to-many)
|
29 |
-
- Thanks to Matteo ([@cubiq](https://twitter.com/cubiq])) for creating the ComfyUI nodes for IP-Adapter
|
|
|
1 |
# Omni-Zero: A diffusion pipeline for zero-shot stylized portrait creation.
|
2 |
- [x] Release single person code
|
3 |
- [ ] Release couples code
|
4 |
+
- [ ] Add LoRA support
|
5 |
|
6 |
## Use Omni-Zero in [fal.ai](https://fal.ai) Workflows [https://fal.ai/dashboard/workflows/okaris/omni-zero](https://fal.ai/dashboard/workflows/okaris/omni-zero)
|
7 |
![Omni-Zero](https://github.com/okaris/omni-zero/assets/1448702/2ccbdf24-eb41-4a85-975e-af701fc4a879)
|
|
|
27 |
- Special thanks to [fal.ai](https://fal.ai) for providing compute for the research and hosting
|
28 |
- This project wouldn't be possible without the great work of the [InstantX Team](https://github.com/InstantID)
|
29 |
- Thanks to [@fofrAI](http://twitter.com/fofrAI) for inspiring me with his [face-to-many workflow](https://github.com/fofr/cog-face-to-many)
|
30 |
+
- Thanks to Matteo ([@cubiq](https://twitter.com/cubiq])) for creating the ComfyUI nodes for IP-Adapter
|
omni_zero.py
CHANGED
@@ -57,6 +57,7 @@ class OmniZeroSingle():
|
|
57 |
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero")
|
58 |
|
59 |
self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"])
|
|
|
60 |
def get_largest_face_embedding_and_kps(self, image, target_image=None):
|
61 |
face_info = self.face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
|
62 |
if len(face_info) == 0:
|
@@ -156,4 +157,66 @@ class OmniZeroSingle():
|
|
156 |
seed=seed,
|
157 |
).images
|
158 |
|
159 |
-
return images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero")
|
58 |
|
59 |
self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"])
|
60 |
+
|
61 |
def get_largest_face_embedding_and_kps(self, image, target_image=None):
|
62 |
face_info = self.face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
|
63 |
if len(face_info) == 0:
|
|
|
157 |
seed=seed,
|
158 |
).images
|
159 |
|
160 |
+
return images
|
161 |
+
|
162 |
+
class OmniZeroCouple():
|
163 |
+
def __init__(self,
|
164 |
+
base_model="stabilityai/stable-diffusion-xl-base-1.0",
|
165 |
+
):
|
166 |
+
snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2")
|
167 |
+
self.face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
168 |
+
self.face_analysis.prepare(ctx_id=0, det_size=(640, 640))
|
169 |
+
|
170 |
+
dtype = torch.float16
|
171 |
+
|
172 |
+
ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
173 |
+
"h94/IP-Adapter",
|
174 |
+
subfolder="models/image_encoder",
|
175 |
+
torch_dtype=dtype,
|
176 |
+
).to("cuda")
|
177 |
+
|
178 |
+
zoedepthnet_path = "okaris/zoe-depth-controlnet-xl"
|
179 |
+
zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to("cuda")
|
180 |
+
|
181 |
+
identitiynet_path = "okaris/face-controlnet-xl"
|
182 |
+
identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to("cuda")
|
183 |
+
|
184 |
+
self.zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
|
185 |
+
|
186 |
+
self.pipeline = OmniZeroPipeline.from_pretrained(
|
187 |
+
base_model,
|
188 |
+
controlnet=[identitynet, zoedepthnet],
|
189 |
+
torch_dtype=dtype,
|
190 |
+
image_encoder=ip_adapter_plus_image_encoder,
|
191 |
+
).to("cuda")
|
192 |
+
|
193 |
+
config = self.pipeline.scheduler.config
|
194 |
+
config["timestep_spacing"] = "trailing"
|
195 |
+
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero")
|
196 |
+
|
197 |
+
self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"])
|
198 |
+
|
199 |
+
def generate(self,
|
200 |
+
seed=42,
|
201 |
+
prompt="A person",
|
202 |
+
negative_prompt="blurry, out of focus",
|
203 |
+
guidance_scale=3.0,
|
204 |
+
number_of_images=1,
|
205 |
+
number_of_steps=10,
|
206 |
+
base_image=None,
|
207 |
+
base_image_strength=0.15,
|
208 |
+
composition_image=None,
|
209 |
+
composition_image_strength=1.0,
|
210 |
+
style_image=None,
|
211 |
+
style_image_strength=1.0,
|
212 |
+
style_image_2=None,
|
213 |
+
style_image_strength_2=1.0,
|
214 |
+
identity_image=None,
|
215 |
+
identity_image_strength=1.0,
|
216 |
+
identity_image_2=None,
|
217 |
+
identity_image_strength_2=1.0,
|
218 |
+
depth_image=None,
|
219 |
+
depth_image_strength=0.5,
|
220 |
+
):
|
221 |
+
#Not implemented yet
|
222 |
+
print("Not implemented yet")
|
utils.py
CHANGED
@@ -1,11 +1,24 @@
|
|
1 |
import math
|
2 |
import PIL
|
|
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
|
6 |
from diffusers.utils import load_image
|
7 |
|
8 |
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
stickwidth = 4
|
10 |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
11 |
kps = np.array(kps)
|
@@ -41,8 +54,20 @@ def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255),
|
|
41 |
|
42 |
|
43 |
def load_and_resize_image(image_path, max_width, max_height, maintain_aspect_ratio=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# Open the image
|
45 |
-
# image = Image.open(image_path)
|
46 |
image = load_image(image_path)
|
47 |
|
48 |
# Get the current width and height of the image
|
@@ -73,7 +98,6 @@ def load_and_resize_image(image_path, max_width, max_height, maintain_aspect_rat
|
|
73 |
|
74 |
return resized_image
|
75 |
|
76 |
-
from PIL import Image
|
77 |
|
78 |
def align_images(image1, image2):
|
79 |
"""
|
@@ -97,3 +121,45 @@ def align_images(image1, image2):
|
|
97 |
image2 = image2.crop((0, 0, new_width, new_height))
|
98 |
|
99 |
return image1, image2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
import PIL
|
3 |
+
from PIL import Image
|
4 |
import cv2
|
5 |
import numpy as np
|
6 |
|
7 |
from diffusers.utils import load_image
|
8 |
|
9 |
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
10 |
+
"""
|
11 |
+
Draw keypoints on an image.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
image_pil (PIL.Image): Image on which to draw the keypoints.
|
15 |
+
kps (list): List of keypoints to draw.
|
16 |
+
color_list (list): List of colors to use for drawing the keypoints.
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
PIL.Image: Image with keypoints drawn on it.
|
20 |
+
"""
|
21 |
+
|
22 |
stickwidth = 4
|
23 |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
24 |
kps = np.array(kps)
|
|
|
54 |
|
55 |
|
56 |
def load_and_resize_image(image_path, max_width, max_height, maintain_aspect_ratio=True):
|
57 |
+
"""
|
58 |
+
Load and resize an image to the specified dimensions.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
image_path (str): Path to the image file.
|
62 |
+
max_width (int): Maximum width of the resized image.
|
63 |
+
max_height (int): Maximum height of the resized image.
|
64 |
+
maintain_aspect_ratio (bool): Whether to maintain the aspect ratio of the image.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
PIL.Image: Resized image.
|
68 |
+
"""
|
69 |
+
|
70 |
# Open the image
|
|
|
71 |
image = load_image(image_path)
|
72 |
|
73 |
# Get the current width and height of the image
|
|
|
98 |
|
99 |
return resized_image
|
100 |
|
|
|
101 |
|
102 |
def align_images(image1, image2):
|
103 |
"""
|
|
|
121 |
image2 = image2.crop((0, 0, new_width, new_height))
|
122 |
|
123 |
return image1, image2
|
124 |
+
|
125 |
+
def align_images_2(image1, image2):
|
126 |
+
"""
|
127 |
+
Resize and crop the second image to match the dimensions of the first image by
|
128 |
+
scaling to aspect fill and then center cropping the extra parts.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
image1 (PIL.Image): First image which will act as the reference for alignment.
|
132 |
+
image2 (PIL.Image): Second image to be aligned to the first image's dimensions.
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
tuple: A tuple containing the first image and the aligned second image.
|
136 |
+
"""
|
137 |
+
# Get dimensions of the first image
|
138 |
+
target_width, target_height = image1.size
|
139 |
+
|
140 |
+
# Calculate the aspect ratio of the second image
|
141 |
+
aspect_ratio = image2.width / image2.height
|
142 |
+
|
143 |
+
# Calculate dimensions to aspect fill
|
144 |
+
if target_width / target_height > aspect_ratio:
|
145 |
+
# The first image is wider relative to its height than the second image
|
146 |
+
fill_height = target_height
|
147 |
+
fill_width = int(fill_height * aspect_ratio)
|
148 |
+
else:
|
149 |
+
# The first image is taller relative to its width than the second image
|
150 |
+
fill_width = target_width
|
151 |
+
fill_height = int(fill_width / aspect_ratio)
|
152 |
+
|
153 |
+
# Resize the second image to fill dimensions
|
154 |
+
filled_image = image2.resize((fill_width, fill_height), Image.Resampling.LANCZOS)
|
155 |
+
|
156 |
+
# Calculate top-left corner of crop box to center crop
|
157 |
+
left = (fill_width - target_width) / 2
|
158 |
+
top = (fill_height - target_height) / 2
|
159 |
+
right = left + target_width
|
160 |
+
bottom = top + target_height
|
161 |
+
|
162 |
+
# Crop the filled image to match the size of the first image
|
163 |
+
cropped_image = filled_image.crop((int(left), int(top), int(right), int(bottom)))
|
164 |
+
|
165 |
+
return image1, cropped_image
|