Spaces:
Running
on
Zero
Running
on
Zero
ai-forever
commited on
Commit
·
24472b6
1
Parent(s):
9d3c2b7
add pipe
Browse files
app.py
CHANGED
@@ -7,7 +7,8 @@ from glob import glob
|
|
7 |
from pathlib import Path
|
8 |
from typing import Optional
|
9 |
|
10 |
-
from diffusers import StableVideoDiffusionPipeline
|
|
|
11 |
from diffusers.utils import load_image, export_to_video
|
12 |
from PIL import Image
|
13 |
|
@@ -17,13 +18,20 @@ from huggingface_hub import hf_hub_download
|
|
17 |
|
18 |
#gradio.helpers.CACHED_FOLDER = '/data/cache'
|
19 |
|
20 |
-
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
21 |
-
|
22 |
-
)
|
23 |
-
pipe.to("cuda")
|
24 |
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
25 |
#pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
max_64_bit_int = 2**63 - 1
|
28 |
|
29 |
@spaces.GPU(duration=120)
|
@@ -40,21 +48,29 @@ def sample(
|
|
40 |
output_folder: str = "outputs",
|
41 |
progress=gr.Progress(track_tqdm=True)
|
42 |
):
|
43 |
-
if image.mode == "RGBA":
|
44 |
-
|
45 |
|
46 |
-
if(randomize_seed):
|
47 |
-
|
48 |
-
generator = torch.manual_seed(seed)
|
49 |
-
|
50 |
os.makedirs(output_folder, exist_ok=True)
|
51 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
52 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
53 |
|
54 |
-
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
torch.manual_seed(seed)
|
57 |
-
|
58 |
return video_path, seed
|
59 |
|
60 |
def resize_image(image, output_size=(1024, 576)):
|
|
|
7 |
from pathlib import Path
|
8 |
from typing import Optional
|
9 |
|
10 |
+
# from diffusers import StableVideoDiffusionPipeline
|
11 |
+
from kandinsky import get_T2V_pipeline
|
12 |
from diffusers.utils import load_image, export_to_video
|
13 |
from PIL import Image
|
14 |
|
|
|
18 |
|
19 |
#gradio.helpers.CACHED_FOLDER = '/data/cache'
|
20 |
|
21 |
+
# pipe = StableVideoDiffusionPipeline.from_pretrained(
|
22 |
+
# "multimodalart/stable-video-diffusion", torch_dtype=torch.float16, variant="fp16"
|
23 |
+
# )
|
24 |
+
# pipe.to("cuda")
|
25 |
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
26 |
#pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
27 |
|
28 |
+
device_map = {
|
29 |
+
"dit": torch.device('cuda'),
|
30 |
+
"vae": torch.device('cuda'),
|
31 |
+
"text_embedder": torch.device('cuda')
|
32 |
+
}
|
33 |
+
pipe = get_T2V_pipeline(device_map)
|
34 |
+
|
35 |
max_64_bit_int = 2**63 - 1
|
36 |
|
37 |
@spaces.GPU(duration=120)
|
|
|
48 |
output_folder: str = "outputs",
|
49 |
progress=gr.Progress(track_tqdm=True)
|
50 |
):
|
51 |
+
# if image.mode == "RGBA":
|
52 |
+
# image = image.convert("RGB")
|
53 |
|
54 |
+
# if(randomize_seed):
|
55 |
+
# seed = random.randint(0, max_64_bit_int)
|
56 |
+
# generator = torch.manual_seed(seed)
|
57 |
+
|
58 |
os.makedirs(output_folder, exist_ok=True)
|
59 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
60 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
61 |
|
62 |
+
# frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
63 |
+
frames = pipe(
|
64 |
+
seed=seed,
|
65 |
+
time_length=12,
|
66 |
+
width = 672,
|
67 |
+
height = 384,
|
68 |
+
save_path=video_path,
|
69 |
+
text=prompt,
|
70 |
+
)
|
71 |
+
export_to_video(frames, video_path, fps=8)
|
72 |
torch.manual_seed(seed)
|
73 |
+
|
74 |
return video_path, seed
|
75 |
|
76 |
def resize_image(image, output_size=(1024, 576)):
|