Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,37 +4,38 @@ from sentence_transformers import SentenceTransformer
|
|
4 |
import duckdb
|
5 |
from huggingface_hub import get_token
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
"""
|
36 |
-
|
37 |
-
return duckdb.sql(sql).to_df()
|
38 |
|
39 |
with gr.Blocks() as demo:
|
40 |
gr.Markdown("""# Vector Search Hub Datasets
|
@@ -43,7 +44,7 @@ with gr.Blocks() as demo:
|
|
43 |
query = gr.Textbox(label="Query")
|
44 |
k = gr.Slider(1, 10, value=5, label="Number of results")
|
45 |
btn = gr.Button("Search")
|
46 |
-
results = gr.Dataframe(headers=["
|
47 |
btn.click(fn=similarity_search, inputs=[query, k], outputs=[results])
|
48 |
|
49 |
|
|
|
4 |
import duckdb
|
5 |
from huggingface_hub import get_token
|
6 |
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from sentence_transformers.models import StaticEmbedding
|
9 |
+
import duckdb
|
10 |
+
|
11 |
+
# Initialize a StaticEmbedding module
|
12 |
+
static_embedding = StaticEmbedding.from_model2vec("minishlab/potion-base-8M")
|
13 |
+
model = SentenceTransformer(modules=[static_embedding])
|
14 |
+
|
15 |
+
dataset_name = "smol-blueprint/fineweb-bbc-news-text-embeddings"
|
16 |
+
embedding_column = "embedding"
|
17 |
+
|
18 |
+
duckdb.sql(
|
19 |
+
query=f"""
|
20 |
+
INSTALL vss;
|
21 |
+
LOAD vss;
|
22 |
+
CREATE TABLE embeddings AS
|
23 |
+
SELECT *, {embedding_column}::float[{model.get_sentence_embedding_dimension()}] as embedding_float
|
24 |
+
FROM 'hf://datasets/{dataset_name}/**/*.parquet';
|
25 |
+
CREATE INDEX my_hnsw_index ON embeddings USING HNSW (embedding_float) WITH (metric = 'cosine');
|
26 |
+
"""
|
27 |
+
)
|
28 |
+
|
29 |
+
def similarity_search(query: str, k: int = 5):
|
30 |
+
embedding = model.encode(query).tolist()
|
31 |
+
return duckdb.sql(
|
32 |
+
query=f"""
|
33 |
+
SELECT url, chunk, array_cosine_distance(embedding_float, {embedding}::FLOAT[{model.get_sentence_embedding_dimension()}]) as distance
|
34 |
+
FROM embeddings
|
35 |
+
ORDER BY distance
|
36 |
+
LIMIT {k};
|
37 |
"""
|
38 |
+
).to_df()
|
|
|
39 |
|
40 |
with gr.Blocks() as demo:
|
41 |
gr.Markdown("""# Vector Search Hub Datasets
|
|
|
44 |
query = gr.Textbox(label="Query")
|
45 |
k = gr.Slider(1, 10, value=5, label="Number of results")
|
46 |
btn = gr.Button("Search")
|
47 |
+
results = gr.Dataframe(headers=["url", "chunk", "distance"])
|
48 |
btn.click(fn=similarity_search, inputs=[query, k], outputs=[results])
|
49 |
|
50 |
|