Spaces:
Runtime error
Runtime error
Update README.md
Browse files
README.md
CHANGED
@@ -1,163 +1,10 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
app_file: app.py
|
8 |
pinned: false
|
|
|
9 |
---
|
10 |
-
|
11 |
-
|
12 |
-
# [Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis](https://hkchengrex.github.io/MMAudio)
|
13 |
-
|
14 |
-
[Ho Kei Cheng](https://hkchengrex.github.io/), [Masato Ishii](https://scholar.google.co.jp/citations?user=RRIO1CcAAAAJ), [Akio Hayakawa](https://scholar.google.com/citations?user=sXAjHFIAAAAJ), [Takashi Shibuya](https://scholar.google.com/citations?user=XCRO260AAAAJ), [Alexander Schwing](https://www.alexander-schwing.de/), [Yuki Mitsufuji](https://www.yukimitsufuji.com/)
|
15 |
-
|
16 |
-
University of Illinois Urbana-Champaign, Sony AI, and Sony Group Corporation
|
17 |
-
|
18 |
-
|
19 |
-
[[Paper (being prepared)]](https://hkchengrex.github.io/MMAudio) [[Project Page]](https://hkchengrex.github.io/MMAudio)
|
20 |
-
|
21 |
-
|
22 |
-
**Note: This repository is still under construction. Single-example inference should work as expected. The training code will be added. Code is subject to non-backward-compatible changes.**
|
23 |
-
|
24 |
-
## Highlight
|
25 |
-
|
26 |
-
MMAudio generates synchronized audio given video and/or text inputs.
|
27 |
-
Our key innovation is multimodal joint training which allows training on a wide range of audio-visual and audio-text datasets.
|
28 |
-
Moreover, a synchronization module aligns the generated audio with the video frames.
|
29 |
-
|
30 |
-
|
31 |
-
## Results
|
32 |
-
|
33 |
-
(All audio from our algorithm MMAudio)
|
34 |
-
|
35 |
-
Videos from Sora:
|
36 |
-
|
37 |
-
https://github.com/user-attachments/assets/82afd192-0cee-48a1-86ca-bd39b8c8f330
|
38 |
-
|
39 |
-
|
40 |
-
Videos from MovieGen/Hunyuan Video/VGGSound:
|
41 |
-
|
42 |
-
https://github.com/user-attachments/assets/29230d4e-21c1-4cf8-a221-c28f2af6d0ca
|
43 |
-
|
44 |
-
For more results, visit https://hkchengrex.com/MMAudio/video_main.html.
|
45 |
-
|
46 |
-
## Installation
|
47 |
-
|
48 |
-
We have only tested this on Ubuntu.
|
49 |
-
|
50 |
-
### Prerequisites
|
51 |
-
|
52 |
-
We recommend using a [miniforge](https://github.com/conda-forge/miniforge) environment.
|
53 |
-
|
54 |
-
- Python 3.8+
|
55 |
-
- PyTorch **2.5.1+** and corresponding torchvision/torchaudio (pick your CUDA version https://pytorch.org/)
|
56 |
-
- ffmpeg<7 ([this is required by torchaudio](https://pytorch.org/audio/master/installation.html#optional-dependencies), you can install it in a miniforge environment with `conda install -c conda-forge 'ffmpeg<7'`)
|
57 |
-
|
58 |
-
**Clone our repository:**
|
59 |
-
|
60 |
-
```bash
|
61 |
-
git clone https://github.com/hkchengrex/MMAudio.git
|
62 |
-
```
|
63 |
-
|
64 |
-
**Install with pip:**
|
65 |
-
|
66 |
-
```bash
|
67 |
-
cd MMAudio
|
68 |
-
pip install -e .
|
69 |
-
```
|
70 |
-
|
71 |
-
(If you encounter the File "setup.py" not found error, upgrade your pip with pip install --upgrade pip)
|
72 |
-
|
73 |
-
**Pretrained models:**
|
74 |
-
|
75 |
-
The models will be downloaded automatically when you run the demo script. MD5 checksums are provided in `mmaudio/utils/download_utils.py`
|
76 |
-
|
77 |
-
| Model | Download link | File size |
|
78 |
-
| -------- | ------- | ------- |
|
79 |
-
| Flow prediction network, small 16kHz | <a href="https://databank.illinois.edu/datafiles/k6jve/download" download="mmaudio_small_16k.pth">mmaudio_small_16k.pth</a> | 601M |
|
80 |
-
| Flow prediction network, small 44.1kHz | <a href="https://databank.illinois.edu/datafiles/864ya/download" download="mmaudio_small_44k.pth">mmaudio_small_44k.pth</a> | 601M |
|
81 |
-
| Flow prediction network, medium 44.1kHz | <a href="https://databank.illinois.edu/datafiles/pa94t/download" download="mmaudio_medium_44k.pth">mmaudio_medium_44k.pth</a> | 2.4G |
|
82 |
-
| Flow prediction network, large 44.1kHz **(recommended)** | <a href="https://databank.illinois.edu/datafiles/4jx76/download" download="mmaudio_large_44k.pth">mmaudio_large_44k.pth</a> | 3.9G |
|
83 |
-
| 16kHz VAE | <a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/v1-16.pth">v1-16.pth</a> | 655M |
|
84 |
-
| 16kHz BigVGAN vocoder |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/best_netG.pt">best_netG.pt</a> | 429M |
|
85 |
-
| 44.1kHz VAE |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/v1-44.pth">v1-44.pth</a> | 1.2G |
|
86 |
-
| Synchformer visual encoder |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/synchformer_state_dict.pth">synchformer_state_dict.pth</a> | 907M |
|
87 |
-
|
88 |
-
The 44.1kHz vocoder will be downloaded automatically.
|
89 |
-
|
90 |
-
The expected directory structure (full):
|
91 |
-
|
92 |
-
```bash
|
93 |
-
MMAudio
|
94 |
-
├── ext_weights
|
95 |
-
│ ├── best_netG.pt
|
96 |
-
│ ├── synchformer_state_dict.pth
|
97 |
-
│ ├── v1-16.pth
|
98 |
-
│ └── v1-44.pth
|
99 |
-
├── weights
|
100 |
-
│ ├── mmaudio_small_16k.pth
|
101 |
-
│ ├── mmaudio_small_44k.pth
|
102 |
-
│ ├── mmaudio_medium_44k.pth
|
103 |
-
│ └── mmaudio_large_44k.pth
|
104 |
-
└── ...
|
105 |
-
```
|
106 |
-
|
107 |
-
The expected directory structure (minimal, for the recommended model only):
|
108 |
-
|
109 |
-
```bash
|
110 |
-
MMAudio
|
111 |
-
├── ext_weights
|
112 |
-
│ ├── synchformer_state_dict.pth
|
113 |
-
│ └── v1-44.pth
|
114 |
-
├── weights
|
115 |
-
│ └── mmaudio_large_44k.pth
|
116 |
-
└── ...
|
117 |
-
```
|
118 |
-
|
119 |
-
## Demo
|
120 |
-
|
121 |
-
By default, these scripts use the `large_44k` model.
|
122 |
-
In our experiments, inference only takes around 6GB of GPU memory (in 16-bit mode) which should fit in most modern GPUs.
|
123 |
-
|
124 |
-
### Command-line interface
|
125 |
-
|
126 |
-
With `demo.py`
|
127 |
-
```bash
|
128 |
-
python demo.py --duration=8 --video=<path to video> --prompt "your prompt"
|
129 |
-
```
|
130 |
-
The output (audio in `.flac` format, and video in `.mp4` format) will be saved in `./output`.
|
131 |
-
See the file for more options.
|
132 |
-
Simply omit the `--video` option for text-to-audio synthesis.
|
133 |
-
The default output (and training) duration is 8 seconds. Longer/shorter durations could also work, but a large deviation from the training duration may result in a lower quality.
|
134 |
-
|
135 |
-
|
136 |
-
### Gradio interface
|
137 |
-
|
138 |
-
Supports video-to-audio and text-to-audio synthesis.
|
139 |
-
|
140 |
-
```
|
141 |
-
python gradio_demo.py
|
142 |
-
```
|
143 |
-
|
144 |
-
### Known limitations
|
145 |
-
|
146 |
-
1. The model sometimes generates undesired unintelligible human speech-like sounds
|
147 |
-
2. The model sometimes generates undesired background music
|
148 |
-
3. The model struggles with unfamiliar concepts, e.g., it can generate "gunfires" but not "RPG firing".
|
149 |
-
|
150 |
-
We believe all of these three limitations can be addressed with more high-quality training data.
|
151 |
-
|
152 |
-
## Training
|
153 |
-
Work in progress.
|
154 |
-
|
155 |
-
## Evaluation
|
156 |
-
Work in progress.
|
157 |
-
|
158 |
-
## Acknowledgement
|
159 |
-
Many thanks to:
|
160 |
-
- [Make-An-Audio 2](https://github.com/bytedance/Make-An-Audio-2) for the 16kHz BigVGAN pretrained model
|
161 |
-
- [BigVGAN](https://github.com/NVIDIA/BigVGAN)
|
162 |
-
- [Synchformer](https://github.com/v-iashin/Synchformer)
|
163 |
-
|
|
|
1 |
---
|
2 |
+
title: Dokdo.1
|
3 |
+
emoji: 🔊✨
|
4 |
colorFrom: blue
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
+
short_description: automated video and sound synthesis from images
|
10 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|