Spaces:
Runtime error
Runtime error
File size: 16,668 Bytes
f47b184 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
# 1. ๋จผ์ ๋ก๊น
์ค์
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# 2. ๋๋จธ์ง imports
import os
import time
from datetime import datetime
import gradio as gr
import torch
import requests
from pathlib import Path
import cv2
from PIL import Image
import json
import spaces
import torchaudio
import tempfile
try:
import mmaudio
except ImportError:
os.system("pip install -e .")
import mmaudio
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils
# ์๋จ์ ๋ฒ์ญ ๋ชจ๋ธ import ์ถ๊ฐ
from transformers import pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# 3. API ์ค์
CATBOX_USER_HASH = "30f52c895fd9d9cb387eee489"
REPLICATE_API_TOKEN = os.getenv("API_KEY")
# 4. ์ค๋์ค ๋ชจ๋ธ ์ค์
device = 'cuda'
dtype = torch.bfloat16
# 5. get_model ํจ์ ์ ์
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
seq_cfg = model.seq_cfg
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
logger.info(f'Loaded weights from {model.model_path}')
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
synchformer_ckpt=model.synchformer_ckpt,
enable_conditions=True,
mode=model.mode,
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
need_vae_encoder=False)
feature_utils = feature_utils.to(device, dtype).eval()
return net, feature_utils, seq_cfg
# 6. ๋ชจ๋ธ ์ด๊ธฐํ
model: ModelConfig = all_model_cfg['large_44k_v2']
model.download_if_needed()
output_dir = Path('./output/gradio')
setup_eval_logging()
net, feature_utils, seq_cfg = get_model()
@spaces.GPU(duration=30) # 30์ด๋ก ์ ํ
@torch.inference_mode()
def video_to_audio(video_path: str, prompt: str, negative_prompt: str = "music",
seed: int = -1, num_steps: int = 15,
cfg_strength: float = 4.0, target_duration: float = 4.0):
try:
logger.info("Starting audio generation process")
torch.cuda.empty_cache()
rng = torch.Generator(device=device)
if seed >= 0:
rng.manual_seed(seed)
else:
rng.seed()
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
# load_video ํจ์ ํธ์ถ ์์
video_info = load_video(video_path, duration_sec=target_duration) # duration_sec ํ๋ผ๋ฏธํฐ๋ก ๋ณ๊ฒฝ
if video_info is None:
logger.error("Failed to load video")
return video_path
clip_frames = video_info.clip_frames
sync_frames = video_info.sync_frames
actual_duration = video_info.duration_sec
if clip_frames is None or sync_frames is None:
logger.error("Failed to extract frames from video")
return video_path
# ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ
clip_frames = clip_frames[:int(actual_duration * video_info.fps)]
sync_frames = sync_frames[:int(actual_duration * video_info.fps)]
clip_frames = clip_frames.unsqueeze(0).to(device, dtype=torch.float16)
sync_frames = sync_frames.unsqueeze(0).to(device, dtype=torch.float16)
seq_cfg.duration = actual_duration
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
logger.info("Generating audio...")
with torch.cuda.amp.autocast():
audios = generate(clip_frames,
sync_frames,
[prompt],
negative_text=[negative_prompt],
feature_utils=feature_utils,
net=net,
fm=fm,
rng=rng,
cfg_strength=cfg_strength)
if audios is None:
logger.error("Failed to generate audio")
return video_path
audio = audios.float().cpu()[0]
output_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
logger.info(f"Creating final video with audio at {output_path}")
make_video(video_info, output_path, audio, sampling_rate=seq_cfg.sampling_rate)
torch.cuda.empty_cache()
if not os.path.exists(output_path):
logger.error("Failed to create output video")
return video_path
logger.info(f'Successfully saved video with audio to {output_path}')
return output_path
except Exception as e:
logger.error(f"Error in video_to_audio: {str(e)}")
torch.cuda.empty_cache()
return video_path
def upload_to_catbox(file_path):
"""catbox.moe API๋ฅผ ์ฌ์ฉํ์ฌ ํ์ผ ์
๋ก๋"""
try:
logger.info(f"Preparing to upload file: {file_path}")
url = "https://catbox.moe/user/api.php"
mime_types = {
'.jpg': 'image/jpeg',
'.jpeg': 'image/jpeg',
'.png': 'image/png',
'.gif': 'image/gif',
'.webp': 'image/webp',
'.jfif': 'image/jpeg'
}
file_extension = Path(file_path).suffix.lower()
if file_extension not in mime_types:
try:
img = Image.open(file_path)
if img.mode != 'RGB':
img = img.convert('RGB')
new_path = file_path.rsplit('.', 1)[0] + '.png'
img.save(new_path, 'PNG')
file_path = new_path
file_extension = '.png'
logger.info(f"Converted image to PNG: {file_path}")
except Exception as e:
logger.error(f"Failed to convert image: {str(e)}")
return None
files = {
'fileToUpload': (
os.path.basename(file_path),
open(file_path, 'rb'),
mime_types.get(file_extension, 'application/octet-stream')
)
}
data = {
'reqtype': 'fileupload',
'userhash': CATBOX_USER_HASH
}
response = requests.post(url, files=files, data=data)
if response.status_code == 200 and response.text.startswith('http'):
file_url = response.text
logger.info(f"File uploaded successfully: {file_url}")
return file_url
else:
raise Exception(f"Upload failed: {response.text}")
except Exception as e:
logger.error(f"File upload error: {str(e)}")
return None
finally:
if 'new_path' in locals() and os.path.exists(new_path):
try:
os.remove(new_path)
except:
pass
def add_watermark(video_path):
"""OpenCV๋ฅผ ์ฌ์ฉํ์ฌ ๋น๋์ค์ ์ํฐ๋งํฌ ์ถ๊ฐ"""
try:
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
text = "GiniGEN.AI"
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = height * 0.05 / 30
thickness = 2
color = (255, 255, 255)
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
margin = int(height * 0.02)
x_pos = width - text_width - margin
y_pos = height - margin
output_path = "watermarked_output.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
out.write(frame)
cap.release()
out.release()
return output_path
except Exception as e:
logger.error(f"Error adding watermark: {str(e)}")
return video_path
def generate_video(image, prompt):
logger.info("Starting video generation with API")
try:
API_KEY = os.getenv("API_KEY", "").strip()
if not API_KEY:
return "API key not properly configured"
temp_dir = "temp_videos"
os.makedirs(temp_dir, exist_ok=True)
image_url = None
if image:
image_url = upload_to_catbox(image)
if not image_url:
return "Failed to upload image"
logger.info(f"Input image URL: {image_url}")
generation_url = "https://api.minimaxi.chat/v1/video_generation"
headers = {
'authorization': f'Bearer {API_KEY}',
'Content-Type': 'application/json'
}
payload = {
"model": "video-01",
"prompt": prompt if prompt else "",
"prompt_optimizer": True
}
if image_url:
payload["first_frame_image"] = image_url
logger.info(f"Sending request with payload: {payload}")
response = requests.post(generation_url, headers=headers, json=payload)
if not response.ok:
error_msg = f"Failed to create video generation task: {response.text}"
logger.error(error_msg)
return error_msg
response_data = response.json()
task_id = response_data.get('task_id')
if not task_id:
return "Failed to get task ID from response"
query_url = "https://api.minimaxi.chat/v1/query/video_generation"
max_attempts = 30
attempt = 0
while attempt < max_attempts:
time.sleep(10)
query_response = requests.get(
f"{query_url}?task_id={task_id}",
headers={'authorization': f'Bearer {API_KEY}'}
)
if not query_response.ok:
attempt += 1
continue
status_data = query_response.json()
status = status_data.get('status')
if status == 'Success':
file_id = status_data.get('file_id')
if not file_id:
return "Failed to get file ID"
retrieve_url = "https://api.minimaxi.chat/v1/files/retrieve"
params = {'file_id': file_id}
file_response = requests.get(
retrieve_url,
headers={'authorization': f'Bearer {API_KEY}'},
params=params
)
if not file_response.ok:
return "Failed to retrieve video file"
try:
file_data = file_response.json()
download_url = file_data.get('file', {}).get('download_url')
if not download_url:
return "Failed to get download URL"
result_info = {
"timestamp": datetime.now().strftime("%Y%m%d_%H%M%S"),
"input_image": image_url,
"output_video_url": download_url,
"prompt": prompt
}
logger.info(f"Video generation result: {json.dumps(result_info, indent=2)}")
video_response = requests.get(download_url)
if not video_response.ok:
return "Failed to download video"
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
with open(output_path, 'wb') as f:
f.write(video_response.content)
final_path = add_watermark(output_path)
# ์ค๋์ค ์ฒ๋ฆฌ ์ถ๊ฐ
try:
logger.info("Starting audio generation process")
final_path_with_audio = video_to_audio(
final_path,
prompt=prompt,
negative_prompt="music",
seed=-1,
num_steps=20,
cfg_strength=4.5,
target_duration=6.0
)
if final_path_with_audio != final_path:
logger.info("Audio generation successful")
try:
if output_path != final_path:
os.remove(output_path)
if final_path != final_path_with_audio:
os.remove(final_path)
except Exception as e:
logger.warning(f"Error cleaning up temporary files: {str(e)}")
return final_path_with_audio
else:
logger.warning("Audio generation skipped, using original video")
return final_path
except Exception as e:
logger.error(f"Error in audio processing: {str(e)}")
return final_path # ์ค๋์ค ์ฒ๋ฆฌ ์คํจ ์ ์ํฐ๋งํฌ๋ง ๋ ๋น๋์ค ๋ฐํ
except Exception as e:
logger.error(f"Error processing video file: {str(e)}")
return "Error processing video file"
elif status == 'Fail':
return "Video generation failed"
attempt += 1
return "Timeout waiting for video generation"
except Exception as e:
logger.error(f"Error in video generation: {str(e)}")
return f"Error in video generation process: {str(e)}"
css = """
footer {
visibility: hidden;
}
.gradio-container {max-width: 1200px !important}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Row():
with gr.Column(scale=3):
video_prompt = gr.Textbox(
label="Video Description",
placeholder="Enter video description...",
lines=3
)
upload_image = gr.Image(type="filepath", label="Upload First Frame Image")
video_generate_btn = gr.Button("๐ฌ Generate Video")
with gr.Column(scale=4):
video_output = gr.Video(label="Generated Video")
# process_and_generate_video ํจ์ ์์
def process_and_generate_video(image, prompt):
if image is None:
return "Please upload an image"
try:
# ํ๊ธ ํ๋กฌํํธ ๊ฐ์ง ๋ฐ ๋ฒ์ญ
contains_korean = any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in prompt)
if contains_korean:
translated = translator(prompt)[0]['translation_text']
logger.info(f"Translated prompt from '{prompt}' to '{translated}'")
prompt = translated
img = Image.open(image)
if img.mode != 'RGB':
img = img.convert('RGB')
temp_path = f"temp_{int(time.time())}.png"
img.save(temp_path, 'PNG')
result = generate_video(temp_path, prompt)
try:
os.remove(temp_path)
except:
pass
return result
except Exception as e:
logger.error(f"Error processing image: {str(e)}")
return "Error processing image"
video_generate_btn.click(
process_and_generate_video,
inputs=[upload_image, video_prompt],
outputs=video_output
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=False) |