Spaces:
Runtime error
Runtime error
import time | |
import uuid | |
from collections.abc import Iterator | |
from typing import Literal | |
from llama_index.core.llms import ChatResponse, CompletionResponse | |
from pydantic import BaseModel, Field | |
from private_gpt.server.chunks.chunks_service import Chunk | |
class OpenAIDelta(BaseModel): | |
"""A piece of completion that needs to be concatenated to get the full message.""" | |
content: str | None | |
class OpenAIMessage(BaseModel): | |
"""Inference result, with the source of the message. | |
Role could be the assistant or system | |
(providing a default response, not AI generated). | |
""" | |
role: Literal["assistant", "system", "user"] = Field(default="user") | |
content: str | None | |
class OpenAIChoice(BaseModel): | |
"""Response from AI. | |
Either the delta or the message will be present, but never both. | |
Sources used will be returned in case context retrieval was enabled. | |
""" | |
finish_reason: str | None = Field(examples=["stop"]) | |
delta: OpenAIDelta | None = None | |
message: OpenAIMessage | None = None | |
sources: list[Chunk] | None = None | |
index: int = 0 | |
class OpenAICompletion(BaseModel): | |
"""Clone of OpenAI Completion model. | |
For more information see: https://platform.openai.com/docs/api-reference/chat/object | |
""" | |
id: str | |
object: Literal["completion", "completion.chunk"] = Field(default="completion") | |
created: int = Field(..., examples=[1623340000]) | |
model: Literal["private-gpt"] | |
choices: list[OpenAIChoice] | |
def from_text( | |
cls, | |
text: str | None, | |
finish_reason: str | None = None, | |
sources: list[Chunk] | None = None, | |
) -> "OpenAICompletion": | |
return OpenAICompletion( | |
id=str(uuid.uuid4()), | |
object="completion", | |
created=int(time.time()), | |
model="private-gpt", | |
choices=[ | |
OpenAIChoice( | |
message=OpenAIMessage(role="assistant", content=text), | |
finish_reason=finish_reason, | |
sources=sources, | |
) | |
], | |
) | |
def json_from_delta( | |
cls, | |
*, | |
text: str | None, | |
finish_reason: str | None = None, | |
sources: list[Chunk] | None = None, | |
) -> str: | |
chunk = OpenAICompletion( | |
id=str(uuid.uuid4()), | |
object="completion.chunk", | |
created=int(time.time()), | |
model="private-gpt", | |
choices=[ | |
OpenAIChoice( | |
delta=OpenAIDelta(content=text), | |
finish_reason=finish_reason, | |
sources=sources, | |
) | |
], | |
) | |
return chunk.model_dump_json() | |
def to_openai_response( | |
response: str | ChatResponse, sources: list[Chunk] | None = None | |
) -> OpenAICompletion: | |
if isinstance(response, ChatResponse): | |
return OpenAICompletion.from_text(response.delta, finish_reason="stop") | |
else: | |
return OpenAICompletion.from_text( | |
response, finish_reason="stop", sources=sources | |
) | |
def to_openai_sse_stream( | |
response_generator: Iterator[str | CompletionResponse | ChatResponse], | |
sources: list[Chunk] | None = None, | |
) -> Iterator[str]: | |
for response in response_generator: | |
if isinstance(response, CompletionResponse | ChatResponse): | |
yield f"data: {OpenAICompletion.json_from_delta(text=response.delta)}\n\n" | |
else: | |
yield f"data: {OpenAICompletion.json_from_delta(text=response, sources=sources)}\n\n" | |
yield f"data: {OpenAICompletion.json_from_delta(text='', finish_reason='stop')}\n\n" | |
yield "data: [DONE]\n\n" | |