Spaces:
Runtime error
Runtime error
import ctypes | |
import numpy as np | |
import pytest | |
from scipy.special import log_softmax | |
import llama_cpp | |
MODEL = "./vendor/llama.cpp/models/ggml-vocab-llama-spm.gguf" | |
def test_llama_cpp_tokenization(): | |
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True, verbose=False) | |
assert llama | |
assert llama._ctx.ctx is not None | |
text = b"Hello World" | |
tokens = llama.tokenize(text) | |
assert tokens[0] == llama.token_bos() | |
assert tokens == [1, 15043, 2787] | |
detokenized = llama.detokenize(tokens) | |
assert detokenized == text | |
tokens = llama.tokenize(text, add_bos=False) | |
assert tokens[0] != llama.token_bos() | |
assert tokens == [15043, 2787] | |
detokenized = llama.detokenize(tokens) | |
assert detokenized != text | |
text = b"Hello World</s>" | |
tokens = llama.tokenize(text) | |
assert tokens[-1] != llama.token_eos() | |
assert tokens == [1, 15043, 2787, 829, 29879, 29958] | |
tokens = llama.tokenize(text, special=True) | |
assert tokens[-1] == llama.token_eos() | |
assert tokens == [1, 15043, 2787, 2] | |
text = b"" | |
tokens = llama.tokenize(text, add_bos=True, special=True) | |
assert tokens[-1] != llama.token_eos() | |
assert tokens == [llama.token_bos()] | |
assert text == llama.detokenize(tokens) | |
def mock_llama(monkeypatch): | |
def setup_mock(llama: llama_cpp.Llama, output_text: str): | |
n_ctx = llama.n_ctx() | |
n_vocab = llama.n_vocab() | |
output_tokens = llama.tokenize( | |
output_text.encode("utf-8"), add_bos=True, special=True | |
) | |
logits = (ctypes.c_float * (n_vocab * n_ctx))(-100.0) | |
for i in range(n_ctx): | |
output_idx = i + 1 # logits for first tokens predict second token | |
if output_idx < len(output_tokens): | |
logits[i * n_vocab + output_tokens[output_idx]] = 100.0 | |
else: | |
logits[i * n_vocab + llama.token_eos()] = 100.0 | |
n = 0 | |
last_n_tokens = 0 | |
def mock_decode(ctx: llama_cpp.llama_context_p, batch: llama_cpp.llama_batch): | |
# Test some basic invariants of this mocking technique | |
assert ctx == llama._ctx.ctx, "context does not match mock_llama" | |
assert batch.n_tokens > 0, "no tokens in batch" | |
assert all( | |
batch.n_seq_id[i] == 1 for i in range(batch.n_tokens) | |
), "n_seq >1 not supported by mock_llama" | |
assert all( | |
batch.seq_id[i][0] == 0 for i in range(batch.n_tokens) | |
), "n_seq >1 not supported by mock_llama" | |
assert batch.logits[ | |
batch.n_tokens - 1 | |
], "logits not allocated for last token" | |
# Update the mock context state | |
nonlocal n | |
nonlocal last_n_tokens | |
n = max(batch.pos[i] for i in range(batch.n_tokens)) + 1 | |
last_n_tokens = batch.n_tokens | |
return 0 | |
def mock_get_logits(ctx: llama_cpp.llama_context_p): | |
# Test some basic invariants of this mocking technique | |
assert ctx == llama._ctx.ctx, "context does not match mock_llama" | |
assert n > 0, "mock_llama_decode not called" | |
assert last_n_tokens > 0, "mock_llama_decode not called" | |
# Return view of logits for last_n_tokens | |
return (ctypes.c_float * (last_n_tokens * n_vocab)).from_address( | |
ctypes.addressof(logits) | |
+ (n - last_n_tokens) * n_vocab * ctypes.sizeof(ctypes.c_float) | |
) | |
monkeypatch.setattr("llama_cpp.llama_cpp.llama_decode", mock_decode) | |
monkeypatch.setattr("llama_cpp.llama_cpp.llama_get_logits", mock_get_logits) | |
def mock_kv_cache_clear(ctx: llama_cpp.llama_context_p): | |
# Test some basic invariants of this mocking technique | |
assert ctx == llama._ctx.ctx, "context does not match mock_llama" | |
return | |
def mock_kv_cache_seq_rm( | |
ctx: llama_cpp.llama_context_p, | |
seq_id: llama_cpp.llama_seq_id, | |
pos0: llama_cpp.llama_pos, | |
pos1: llama_cpp.llama_pos, | |
): | |
# Test some basic invariants of this mocking technique | |
assert ctx == llama._ctx.ctx, "context does not match mock_llama" | |
return | |
def mock_kv_cache_seq_cp( | |
ctx: llama_cpp.llama_context_p, | |
seq_id_src: llama_cpp.llama_seq_id, | |
seq_id_dst: llama_cpp.llama_seq_id, | |
pos0: llama_cpp.llama_pos, | |
pos1: llama_cpp.llama_pos, | |
): | |
# Test some basic invariants of this mocking technique | |
assert ctx == llama._ctx.ctx, "context does not match mock_llama" | |
return | |
def mock_kv_cache_seq_keep( | |
ctx: llama_cpp.llama_context_p, | |
seq_id: llama_cpp.llama_seq_id, | |
): | |
# Test some basic invariants of this mocking technique | |
assert ctx == llama._ctx.ctx, "context does not match mock_llama" | |
return | |
def mock_kv_cache_seq_add( | |
ctx: llama_cpp.llama_context_p, | |
seq_id: llama_cpp.llama_seq_id, | |
pos0: llama_cpp.llama_pos, | |
pos1: llama_cpp.llama_pos, | |
): | |
# Test some basic invariants of this mocking technique | |
assert ctx == llama._ctx.ctx, "context does not match mock_llama" | |
return | |
monkeypatch.setattr("llama_cpp.llama_cpp.llama_kv_cache_clear", mock_kv_cache_clear) | |
monkeypatch.setattr("llama_cpp.llama_cpp.llama_kv_cache_seq_rm", mock_kv_cache_seq_rm) | |
monkeypatch.setattr("llama_cpp.llama_cpp.llama_kv_cache_seq_cp", mock_kv_cache_seq_cp) | |
monkeypatch.setattr("llama_cpp.llama_cpp.llama_kv_cache_seq_keep", mock_kv_cache_seq_keep) | |
monkeypatch.setattr("llama_cpp.llama_cpp.llama_kv_cache_seq_add", mock_kv_cache_seq_add) | |
return setup_mock | |
def test_llama_patch(mock_llama): | |
n_ctx = 128 | |
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True, n_ctx=n_ctx) | |
n_vocab = llama_cpp.llama_n_vocab(llama._model.model) | |
assert n_vocab == 32000 | |
text = "The quick brown fox" | |
output_text = " jumps over the lazy dog." | |
all_text = text + output_text | |
## Test basic completion from bos until eos | |
mock_llama(llama, all_text) | |
completion = llama.create_completion("", max_tokens=36) | |
assert completion["choices"][0]["text"] == all_text | |
assert completion["choices"][0]["finish_reason"] == "stop" | |
## Test basic completion until eos | |
mock_llama(llama, all_text) | |
completion = llama.create_completion(text, max_tokens=20) | |
assert completion["choices"][0]["text"] == output_text | |
assert completion["choices"][0]["finish_reason"] == "stop" | |
## Test streaming completion until eos | |
mock_llama(llama, all_text) | |
chunks = list(llama.create_completion(text, max_tokens=20, stream=True)) | |
assert "".join(chunk["choices"][0]["text"] for chunk in chunks) == output_text | |
assert chunks[-1]["choices"][0]["finish_reason"] == "stop" | |
## Test basic completion until stop sequence | |
mock_llama(llama, all_text) | |
completion = llama.create_completion(text, max_tokens=20, stop=["lazy"]) | |
assert completion["choices"][0]["text"] == " jumps over the " | |
assert completion["choices"][0]["finish_reason"] == "stop" | |
## Test streaming completion until stop sequence | |
mock_llama(llama, all_text) | |
chunks = list( | |
llama.create_completion(text, max_tokens=20, stream=True, stop=["lazy"]) | |
) | |
assert ( | |
"".join(chunk["choices"][0]["text"] for chunk in chunks) == " jumps over the " | |
) | |
assert chunks[-1]["choices"][0]["finish_reason"] == "stop" | |
## Test basic completion until length | |
mock_llama(llama, all_text) | |
completion = llama.create_completion(text, max_tokens=2) | |
assert completion["choices"][0]["text"] == " jumps" | |
assert completion["choices"][0]["finish_reason"] == "length" | |
## Test streaming completion until length | |
mock_llama(llama, all_text) | |
chunks = list(llama.create_completion(text, max_tokens=2, stream=True)) | |
assert "".join(chunk["choices"][0]["text"] for chunk in chunks) == " jumps" | |
assert chunks[-1]["choices"][0]["finish_reason"] == "length" | |
def test_llama_pickle(): | |
import pickle | |
import tempfile | |
fp = tempfile.TemporaryFile() | |
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True) | |
pickle.dump(llama, fp) | |
fp.seek(0) | |
llama = pickle.load(fp) | |
assert llama | |
assert llama.ctx is not None | |
text = b"Hello World" | |
assert llama.detokenize(llama.tokenize(text)) == text | |
def test_utf8(mock_llama): | |
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True, logits_all=True) | |
output_text = "😀" | |
## Test basic completion with utf8 multibyte | |
mock_llama(llama, output_text) | |
completion = llama.create_completion("", max_tokens=4) | |
assert completion["choices"][0]["text"] == output_text | |
## Test basic completion with incomplete utf8 multibyte | |
mock_llama(llama, output_text) | |
completion = llama.create_completion("", max_tokens=1) | |
assert completion["choices"][0]["text"] == "" | |
def test_llama_server(): | |
from fastapi.testclient import TestClient | |
from llama_cpp.server.app import create_app, Settings | |
settings = Settings( | |
model=MODEL, | |
vocab_only=True, | |
) | |
app = create_app(settings) | |
client = TestClient(app) | |
response = client.get("/v1/models") | |
assert response.json() == { | |
"object": "list", | |
"data": [ | |
{ | |
"id": MODEL, | |
"object": "model", | |
"owned_by": "me", | |
"permissions": [], | |
} | |
], | |
} | |
def test_logits_to_logprobs(size_and_axis, convert_to_list: bool, atol: float = 1e-7): | |
size, axis = size_and_axis | |
logits: np.ndarray = -np.random.uniform(low=0, high=60, size=size) | |
logits = logits.astype(np.single) | |
if convert_to_list: | |
# Currently, logits are converted from arrays to lists. This may change soon | |
logits = logits.tolist() | |
log_probs = llama_cpp.Llama.logits_to_logprobs(logits, axis=axis) | |
log_probs_correct = log_softmax(logits, axis=axis) | |
assert log_probs.dtype == np.single | |
assert log_probs.shape == size | |
assert np.allclose(log_probs, log_probs_correct, atol=atol) | |
def test_llama_cpp_version(): | |
assert llama_cpp.__version__ | |