Spaces:
Sleeping
Sleeping
from transformers import pipeline, SamModel, SamProcessor | |
import torch | |
import numpy as np | |
from PIL import Image | |
import requests | |
# Image Segmentation Model | |
sam_model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77") | |
sam_processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-77") | |
def show_colored_mask(mask, combined_mask, color): | |
""" | |
Add a single-colored mask to the combined mask. | |
Args: | |
mask (numpy.ndarray): Binary mask to overlay. | |
combined_mask (numpy.ndarray): Combined RGBA mask. | |
color (tuple): RGBA color for the mask. | |
""" | |
if mask.ndim == 3: # If mask has channels then take the first one | |
mask = mask[0] | |
mask = mask.squeeze() # Remove extra dimension | |
mask_binary = (mask > 0).astype(np.uint8) # Ensure the mask is binary | |
# Apply the color to the mask | |
for c in range(3): # RGB channels | |
combined_mask[:, :, c] = np.where(mask_binary > 0, color[c], combined_mask[:, :, c]) | |
combined_mask[:, :, 3] = np.where(mask_binary > 0, color[3], combined_mask[:, :, 3]) # Alpha channel (transperency) | |
def segment_image(input_image, input_points): | |
""" | |
Perform image segmentation and overlay masks with a single solid color. | |
Args: | |
input_image (PIL.Image): The input image. | |
input_points (list): List of points [[x, y], ...]. | |
Returns: | |
PIL.Image: Image with masks applied in one solid red color. | |
""" | |
# Convert input points to a 4D tensor | |
input_points_tensor = torch.tensor(input_points, dtype=torch.float32).unsqueeze(0).unsqueeze(1) | |
# Process input and run the SAM model | |
inputs = sam_processor(input_image, input_points=input_points_tensor, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = sam_model(**inputs) | |
# Post-process masks | |
predicted_masks = sam_processor.image_processor.post_process_masks( | |
outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"] | |
) | |
# Define a solid red color with full opacity | |
single_color = (255, 0, 0, 100) | |
# Prepare a combined RGBA mask | |
image_size = input_image.size | |
combined_mask = np.zeros((image_size[1], image_size[0], 4), dtype=np.uint8) | |
# Apply all masks using the single color | |
for mask in predicted_masks[0]: | |
mask = mask.numpy() | |
show_colored_mask(mask, combined_mask, single_color) | |
# Combine the mask with the original image | |
input_image_rgba = input_image.convert("RGBA") # Red Green Blue Alpha | |
combined_image = Image.alpha_composite(input_image_rgba, Image.fromarray(combined_mask, "RGBA")) | |
return combined_image | |