# For this demo we're using Gradio, Hugging Face Spaces, Pytorch and Hugging Face Transformers | |
import gradio as gr | |
from gradio.mix import Parallel, Series | |
# Summarizes Meeting Transcripts using Google Research's PEGASUS library | |
summarizer = gr.Interface.load("huggingface/t5-base") | |
output_text = gr.outputs.Textbox() | |
# Displays the end results to a webpage (i.e. here HuggingFace Spaces) | |
Series(summarizer, inputs = gr.inputs.Textbox(lines=10, label="Meeting Transcript")).launch() | |