Spaces:
Sleeping
Sleeping
adamtayzzz
commited on
Upload 21 files
Browse files- app.py +91 -0
- blackbox_utils/Attack_base.py +238 -0
- blackbox_utils/__pycache__/Attack_base.cpython-37.pyc +0 -0
- blackbox_utils/__pycache__/my_attack.cpython-37.pyc +0 -0
- blackbox_utils/my_attack.py +99 -0
- not_pad_0.5/config.json +37 -0
- not_pad_0.5/log.log +0 -0
- not_pad_0.5/pytorch_model.bin +3 -0
- requirements.txt +18 -0
- test_module/__init__.py +0 -0
- test_module/__pycache__/__init__.cpython-37.pyc +0 -0
- test_module/__pycache__/modeling_skim_predictor.cpython-37.pyc +0 -0
- test_module/__pycache__/modeling_transkimer.cpython-37.pyc +0 -0
- test_module/__pycache__/modeling_transkimer_roberta.cpython-37.pyc +0 -0
- test_module/__pycache__/modeling_utils.cpython-37.pyc +0 -0
- test_module/modeling_skim_predictor.py +51 -0
- test_module/modeling_transkimer.py +2002 -0
- test_module/modeling_transkimer_roberta.py +1624 -0
- test_module/modeling_utils.py +92 -0
- utils/extend_auto_mapping.py +13 -0
- utils/utils_qa.py +427 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
from datasets import load_dataset, load_metric
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
from tqdm.auto import tqdm
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
import transformers
|
14 |
+
from accelerate import Accelerator # huggingface package
|
15 |
+
from transformers import (
|
16 |
+
AdamW,
|
17 |
+
AutoConfig,
|
18 |
+
AutoModelForSequenceClassification,
|
19 |
+
AutoTokenizer,
|
20 |
+
DataCollatorWithPadding,
|
21 |
+
PretrainedConfig,
|
22 |
+
SchedulerType,
|
23 |
+
default_data_collator,
|
24 |
+
get_scheduler,
|
25 |
+
set_seed,
|
26 |
+
BertTokenizer,
|
27 |
+
)
|
28 |
+
from transformers.utils.versions import require_version
|
29 |
+
|
30 |
+
import torch
|
31 |
+
from test_module.modeling_transkimer import BertForSequenceClassification as TranskimerForSequenceClassification
|
32 |
+
from test_module.modeling_transkimer_roberta import RobertaForSequenceClassification as TranskimerRobertaForSequenceClassification
|
33 |
+
from test_module.modeling_utils import convert_softmax_mask_to_digit
|
34 |
+
|
35 |
+
from blackbox_utils.my_attack import CharacterAttack
|
36 |
+
from transformers import glue_processors as processors
|
37 |
+
|
38 |
+
|
39 |
+
task_to_keys = {
|
40 |
+
"cola": ("sentence", None),
|
41 |
+
"mnli": ("premise", "hypothesis"),
|
42 |
+
"mrpc": ("sentence1", "sentence2"),
|
43 |
+
"qnli": ("question", "sentence"),
|
44 |
+
"qqp": ("question1", "question2"),
|
45 |
+
"rte": ("sentence1", "sentence2"),
|
46 |
+
"sst2": ("sentence", None),
|
47 |
+
"stsb": ("sentence1", "sentence2"),
|
48 |
+
"wnli": ("sentence1", "sentence2"),
|
49 |
+
"imdb": ("text", None),
|
50 |
+
}
|
51 |
+
|
52 |
+
model_path_dict = {
|
53 |
+
"transkimer_sst2_not_pad":'./not_pad_0.5',
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
datasets.utils.logging.set_verbosity_error()
|
58 |
+
transformers.utils.logging.set_verbosity_error()
|
59 |
+
|
60 |
+
|
61 |
+
task_name = 'sst2'
|
62 |
+
model_type = 'transkimer'
|
63 |
+
|
64 |
+
# Load pretrained model and tokenizer
|
65 |
+
model_path_key = f'{model_type}_{task_name}_not_pad'
|
66 |
+
model_path = model_path_dict[model_path_key]
|
67 |
+
config = AutoConfig.from_pretrained(model_path, num_labels=num_labels, finetuning_task=task_name)
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', use_fast=True)
|
69 |
+
model = TranskimerForSequenceClassification.from_pretrained(model_path,from_tf=bool(".ckpt" in model_path),config=config,)
|
70 |
+
|
71 |
+
# Preprocessing the datasets
|
72 |
+
sentence1_key, sentence2_key = task_to_keys[task_name]
|
73 |
+
|
74 |
+
processor = processors[task_name]()
|
75 |
+
label_list = processor.get_labels()
|
76 |
+
|
77 |
+
label_to_id = {v: i for i, v in enumerate(label_list)}
|
78 |
+
|
79 |
+
padding = False
|
80 |
+
|
81 |
+
attack = CharacterAttack(f'{model_type}_{task_name}',model,tokenizer,device='cpu',max_per=10,padding=padding,max_length=128,label_to_id=label_to_id,sentence1_key=sentence1_key,sentence2_key=sentence2_key)
|
82 |
+
|
83 |
+
|
84 |
+
def greet(text):
|
85 |
+
text_input = [(text,None)]
|
86 |
+
outputs,time = attack.get_prob(text_input)
|
87 |
+
_,token_remained,_ = attack.output_analysis(outputs)
|
88 |
+
return time,token_remained.item()
|
89 |
+
|
90 |
+
iface = gr.Interface(fn=greet, inputs=["text","text"], outputs=["number","number"])
|
91 |
+
iface.launch()
|
blackbox_utils/Attack_base.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
# import jieba
|
4 |
+
import string
|
5 |
+
import numpy as np
|
6 |
+
from copy import deepcopy
|
7 |
+
from tqdm import tqdm
|
8 |
+
import time
|
9 |
+
from datetime import datetime
|
10 |
+
import os
|
11 |
+
from sklearn.linear_model import LinearRegression
|
12 |
+
from torch.multiprocessing import Process,Pool
|
13 |
+
|
14 |
+
from transformers import BertTokenizer
|
15 |
+
|
16 |
+
os.environ['TOKENIZERS_PARALLELISM']='True'
|
17 |
+
# torch.autograd.set_detect_anomaly(True)
|
18 |
+
|
19 |
+
class BaseAttack:
|
20 |
+
def __init__(self, name, model, tokenizer, device, max_per, padding,max_length,label_to_id,sentence1_key,sentence2_key):
|
21 |
+
self.name = name
|
22 |
+
self.model = model
|
23 |
+
self.tokenizer = tokenizer
|
24 |
+
self.device = device
|
25 |
+
self.model = self.model.to(self.device)
|
26 |
+
self.model.eval()
|
27 |
+
self.padding = padding
|
28 |
+
self.max_length = max_length
|
29 |
+
self.label_to_id = label_to_id
|
30 |
+
self.sentence1_key = sentence1_key
|
31 |
+
self.sentence2_key = sentence2_key
|
32 |
+
# 修改token个数的最大值
|
33 |
+
self.max_per = max_per
|
34 |
+
# linear regression model initialization
|
35 |
+
self.linear_regression()
|
36 |
+
self.random_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
37 |
+
|
38 |
+
def run_attack(self, x):
|
39 |
+
pass
|
40 |
+
|
41 |
+
def compute_loss(self, x):
|
42 |
+
pass
|
43 |
+
|
44 |
+
def preprocess_function(self,examples,to_device=True):
|
45 |
+
# Tokenize the texts
|
46 |
+
texts = ((examples[0],) if self.sentence2_key is None else (examples[0], examples[1]))
|
47 |
+
result = self.tokenizer(*texts, padding=self.padding, max_length=self.max_length, truncation=True)
|
48 |
+
new_result = {}
|
49 |
+
for key,item in result.items():
|
50 |
+
if to_device:
|
51 |
+
new_result[key] = torch.tensor(item).unsqueeze(0).to(self.device)
|
52 |
+
else:
|
53 |
+
new_result[key] = torch.tensor(item).unsqueeze(0)
|
54 |
+
return new_result
|
55 |
+
|
56 |
+
def get_pred(self,input_):
|
57 |
+
return self.get_prob(input_).logits.argmax(dim=-1)
|
58 |
+
|
59 |
+
def get_prob(self,input_):
|
60 |
+
toc = datetime.now()
|
61 |
+
batch = self.preprocess_function(input_)
|
62 |
+
# batch['gumbel_softmax']=gradient
|
63 |
+
# print(batch)
|
64 |
+
outputs = self.model(**batch) # get all logits
|
65 |
+
tic = datetime.now()
|
66 |
+
running_time = (tic-toc).total_seconds()
|
67 |
+
return outputs,running_time
|
68 |
+
|
69 |
+
def output_analysis(self,outputs):
|
70 |
+
# print(outputs)
|
71 |
+
|
72 |
+
all_skim_loss, all_tokens_remained = list(), list()
|
73 |
+
all_layer_tokens_remained = [[] for _ in range(len(outputs.layer_tokens_remained))]
|
74 |
+
|
75 |
+
all_skim_loss.append(outputs.skim_loss)
|
76 |
+
all_tokens_remained.append(outputs.tokens_remained)
|
77 |
+
for layer_idx,mac in enumerate(outputs.layer_tokens_remained):
|
78 |
+
all_layer_tokens_remained[layer_idx].append(mac)
|
79 |
+
|
80 |
+
skim_loss = torch.mean(torch.stack(all_skim_loss))
|
81 |
+
tokens_remained = torch.mean(torch.stack(all_tokens_remained))
|
82 |
+
layers_result = [torch.mean(torch.stack(macs)) for i,macs in enumerate(all_layer_tokens_remained)]
|
83 |
+
|
84 |
+
return skim_loss,tokens_remained,layers_result
|
85 |
+
|
86 |
+
def load_data(self,model_path_key,mode='train'):
|
87 |
+
path = f'flops_count/{model_path_key}/{mode}'
|
88 |
+
if os.path.exists(f'{path}/process_data.pth'):
|
89 |
+
print(f'loading data from {path}')
|
90 |
+
data = torch.load(f'{path}/process_data.pth')
|
91 |
+
else:
|
92 |
+
time_list = torch.load(f'{path}/time_list.pth')
|
93 |
+
ratio_list = torch.load(f'{path}/ratio_list.pth')
|
94 |
+
token_num_list = torch.load(f'{path}/text_len_list_tokenizer.pth')
|
95 |
+
|
96 |
+
ratio_list_ = []
|
97 |
+
for ratio in ratio_list:
|
98 |
+
ratio_list_.append(ratio.item())
|
99 |
+
y = np.expand_dims(np.array(ratio_list_),axis=1)
|
100 |
+
# print(x.shape)
|
101 |
+
|
102 |
+
time_list_ = []
|
103 |
+
for time,token_num in zip(time_list,token_num_list):
|
104 |
+
time_list_.append((time/(token_num*(10**8))))
|
105 |
+
x = np.expand_dims(np.array(time_list_),axis=1)
|
106 |
+
# print(y.shape)
|
107 |
+
|
108 |
+
data = dict()
|
109 |
+
data['x']=x
|
110 |
+
data['y']=y
|
111 |
+
torch.save(data,f'{path}/process_data.pth')
|
112 |
+
|
113 |
+
return data
|
114 |
+
|
115 |
+
def predict(self,x):
|
116 |
+
return self.w*x+self.b
|
117 |
+
|
118 |
+
def linear_regression(self):
|
119 |
+
print("="*20)
|
120 |
+
print('Linear Regression Generation')
|
121 |
+
data_train = self.load_data(self.name,mode='train')
|
122 |
+
data_test = self.load_data(self.name,mode='test')
|
123 |
+
# print(data_train,data_test)
|
124 |
+
|
125 |
+
reg = LinearRegression().fit(data_train['x'],data_train['y'])
|
126 |
+
train_score = reg.score(data_train['x'],data_train['y'])
|
127 |
+
test_score = reg.score(data_test['x'],data_test['y'])
|
128 |
+
print(f'train set score: {train_score}')
|
129 |
+
print(f'test set score: {test_score}')
|
130 |
+
|
131 |
+
self.w = reg.coef_[0][0]
|
132 |
+
self.b = reg.intercept_[0]
|
133 |
+
print("w:",self.w)
|
134 |
+
print("b:",self.b)
|
135 |
+
|
136 |
+
print(self.predict(0.8))
|
137 |
+
|
138 |
+
|
139 |
+
class MyAttack(BaseAttack):
|
140 |
+
def __init__(self, name, model, tokenizer, device, max_per, padding, max_length, label_to_id, sentence1_key, sentence2_key):
|
141 |
+
super(MyAttack, self).__init__(name, model, tokenizer, device, max_per, padding, max_length, label_to_id, sentence1_key, sentence2_key)
|
142 |
+
# self.insert_character = string.punctuation
|
143 |
+
self.insert_character = string.digits
|
144 |
+
self.insert_character += string.ascii_letters
|
145 |
+
# self.insert_character -= """"'/\\"""
|
146 |
+
# print(self.insert_character)
|
147 |
+
|
148 |
+
self.origin_ratio = []
|
149 |
+
self.attack_ratio = []
|
150 |
+
self.layer_result = []
|
151 |
+
self.origin_layer_result = []
|
152 |
+
|
153 |
+
# @torch.no_grad()
|
154 |
+
# def select_best(self, new_strings):
|
155 |
+
# best_string = None
|
156 |
+
# best_loss = 0
|
157 |
+
# for new_string in new_strings:
|
158 |
+
# new_predicted_loss = self.compute_loss(new_string)
|
159 |
+
# if new_predicted_loss>best_loss:
|
160 |
+
# best_loss = new_predicted_loss
|
161 |
+
# best_string = new_string
|
162 |
+
|
163 |
+
# assert best_string is not None
|
164 |
+
# return best_string,best_loss
|
165 |
+
|
166 |
+
@torch.no_grad()
|
167 |
+
def select_best(self, new_strings):
|
168 |
+
# self.model.to('cpu')
|
169 |
+
best_string = None
|
170 |
+
best_loss = 0
|
171 |
+
with Pool(processes=4) as pool:
|
172 |
+
loss_list = pool.map(self.compute_loss,new_strings)
|
173 |
+
idx = np.argmax(np.array(loss_list))
|
174 |
+
best_loss = loss_list[idx]
|
175 |
+
best_string = new_strings[idx]
|
176 |
+
# self.model.to(self.device)
|
177 |
+
# for new_string in new_strings:
|
178 |
+
# new_predicted_loss = self.compute_loss(new_string)
|
179 |
+
# if new_predicted_loss>best_loss:
|
180 |
+
# best_loss = new_predicted_loss
|
181 |
+
# best_string = new_string
|
182 |
+
|
183 |
+
assert best_string is not None
|
184 |
+
# self.model.to(self.device)
|
185 |
+
return best_string,best_loss
|
186 |
+
|
187 |
+
def compute_loss(self, xxx):
|
188 |
+
raise NotImplementedError
|
189 |
+
|
190 |
+
def mutation(self, current_adv_text, grad, modify_pos):
|
191 |
+
raise NotImplementedError
|
192 |
+
|
193 |
+
def run_attack(self, text):
|
194 |
+
# assert len(text) == 1
|
195 |
+
# print(text)
|
196 |
+
text[0] = text[0].strip(" .")
|
197 |
+
text[1] = text[1].strip(" .")
|
198 |
+
print(f'Origin Text: {text}')
|
199 |
+
current_adv_text = deepcopy(text)
|
200 |
+
# max_per 最多扰动单词的个数
|
201 |
+
# pbar = tqdm(range(self.max_per))
|
202 |
+
|
203 |
+
best_loss = 0
|
204 |
+
best_tokens_remained = 0
|
205 |
+
best_layer_result = None
|
206 |
+
|
207 |
+
output,_ = self.get_prob(current_adv_text)
|
208 |
+
origin_skim_loss,origin_ratio_,origin_layer_result_ = self.output_analysis(output)
|
209 |
+
print(origin_skim_loss,origin_ratio_)
|
210 |
+
self.origin_ratio.append(origin_ratio_.item())
|
211 |
+
self.origin_layer_result.append(origin_layer_result_)
|
212 |
+
|
213 |
+
|
214 |
+
# for it in pbar:
|
215 |
+
for _ in range(self.max_per):
|
216 |
+
# 得到每个修改的位置
|
217 |
+
new_strings = self.mutation(current_adv_text)
|
218 |
+
#print(new_strings)
|
219 |
+
current_adv_text,current_loss = self.select_best(new_strings)
|
220 |
+
# print(new_strings)
|
221 |
+
# print(current_adv_text,current_loss,current_tokens_remained)
|
222 |
+
if current_loss > best_loss:
|
223 |
+
best_adv_text = deepcopy(current_adv_text)
|
224 |
+
best_loss = current_loss
|
225 |
+
print(best_adv_text)
|
226 |
+
|
227 |
+
output,_ = self.get_prob(best_adv_text)
|
228 |
+
_,best_tokens_remained,best_layer_result = self.output_analysis(output)
|
229 |
+
|
230 |
+
self.attack_ratio.append(best_tokens_remained.item())
|
231 |
+
self.layer_result.append(best_layer_result)
|
232 |
+
print(f'Malicious Text: {best_adv_text}')
|
233 |
+
print(f'Origin Ratio: {self.origin_ratio[-1]} Attack Ratio: {self.attack_ratio[-1]}')
|
234 |
+
print(f'Layer Result: {self.layer_result[-1]}')
|
235 |
+
|
236 |
+
return best_adv_text,best_loss,best_tokens_remained,best_layer_result
|
237 |
+
|
238 |
+
|
blackbox_utils/__pycache__/Attack_base.cpython-37.pyc
ADDED
Binary file (6.68 kB). View file
|
|
blackbox_utils/__pycache__/my_attack.cpython-37.pyc
ADDED
Binary file (3.89 kB). View file
|
|
blackbox_utils/my_attack.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import time
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from tqdm import tqdm
|
7 |
+
import nltk
|
8 |
+
import string
|
9 |
+
from copy import deepcopy
|
10 |
+
from torchprofile import profile_macs
|
11 |
+
from datetime import datetime
|
12 |
+
|
13 |
+
from transformers import BertTokenizer, BertModel, BertForMaskedLM
|
14 |
+
from nltk.tokenize.treebank import TreebankWordTokenizer, TreebankWordDetokenizer
|
15 |
+
from blackbox_utils.Attack_base import MyAttack
|
16 |
+
|
17 |
+
|
18 |
+
class CharacterAttack(MyAttack):
|
19 |
+
# TODO: 存储一个list每次只修改不同的token位置
|
20 |
+
def __init__(self, name, model, tokenizer, device, max_per, padding, max_length, label_to_id, sentence1_key, sentence2_key):
|
21 |
+
super(CharacterAttack, self).__init__(name, model, tokenizer, device, max_per, padding, max_length, label_to_id, sentence1_key, sentence2_key)
|
22 |
+
|
23 |
+
def compute_importance(self, text):
|
24 |
+
current_tensor = self.preprocess_function(text)["input_ids"][0]
|
25 |
+
# print(current_tensor)
|
26 |
+
word_losses = {}
|
27 |
+
for idx in range(1,len(current_tensor)-1):
|
28 |
+
# print(current_tensor[:idx])
|
29 |
+
# print(current_tensor[idx+1:])
|
30 |
+
sentence_tokens_without = torch.cat([current_tensor[:idx],current_tensor[idx + 1:]])
|
31 |
+
sentence_without = self.tokenizer.decode(sentence_tokens_without)
|
32 |
+
sentence_without = [sentence_without,text[1]]
|
33 |
+
word_losses[int(current_tensor[idx])] = self.compute_loss(sentence_without)
|
34 |
+
word_losses = [k for k, _ in sorted(word_losses.items(), key=lambda item: item[1], reverse=True)]
|
35 |
+
return word_losses
|
36 |
+
|
37 |
+
def compute_loss(self, text):
|
38 |
+
inputs = self.preprocess_function(text)
|
39 |
+
shift_inputs = (inputs['input_ids'],inputs['attention_mask'],inputs['token_type_ids'])
|
40 |
+
# toc = datetime.now()
|
41 |
+
macs = profile_macs(self.model, shift_inputs)
|
42 |
+
# tic = datetime.now()
|
43 |
+
# print((tic-toc).total_seconds())
|
44 |
+
result = self.random_tokenizer(*inputs, padding=self.padding, max_length=self.max_length, truncation=True)
|
45 |
+
token_length = len(result["input_ids"])
|
46 |
+
macs_per_token = macs/(token_length*10**8)
|
47 |
+
|
48 |
+
return self.predict(macs_per_token)
|
49 |
+
|
50 |
+
def mutation(self, current_adv_text):
|
51 |
+
current_tensor = self.preprocess_function(current_adv_text)
|
52 |
+
# print(current_tensor)
|
53 |
+
current_tensor = current_tensor["input_ids"][0]
|
54 |
+
# print(current_tensor)
|
55 |
+
new_strings = self.character_replace_mutation(current_adv_text, current_tensor)
|
56 |
+
return new_strings
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def transfer(c: str):
|
60 |
+
if c in string.ascii_lowercase:
|
61 |
+
return c.upper()
|
62 |
+
elif c in string.ascii_uppercase:
|
63 |
+
return c.lower()
|
64 |
+
return c
|
65 |
+
|
66 |
+
def character_replace_mutation(self, current_text, current_tensor):
|
67 |
+
important_tensor = self.compute_importance(current_text)
|
68 |
+
# current_string = [self.tokenizer.decoder[int(t)] for t in current_tensor]
|
69 |
+
new_strings = [current_text]
|
70 |
+
# 遍历每个vocabulary,查找文本有的第一个token
|
71 |
+
# print(current_tensor)
|
72 |
+
for t in important_tensor:
|
73 |
+
if int(t) not in current_tensor:
|
74 |
+
continue
|
75 |
+
ori_decode_token = self.tokenizer.decode([int(t)])
|
76 |
+
# print(ori_decode_token)
|
77 |
+
# if self.space_token in ori_decode_token:
|
78 |
+
# ori_token = ori_decode_token.replace(self.space_token, '')
|
79 |
+
# else:
|
80 |
+
ori_token = ori_decode_token
|
81 |
+
# 如果只有一个长度
|
82 |
+
if len(ori_token) == 1 or ori_token not in current_text[0]: #todo
|
83 |
+
continue
|
84 |
+
# 随意插入一个字符
|
85 |
+
candidate = [ori_token[:i] + insert + ori_token[i:] for i in range(len(ori_token)) for insert in self.insert_character]
|
86 |
+
# 随意更换一个大小写
|
87 |
+
candidate += [ori_token[:i - 1] + self.transfer(ori_token[i - 1]) + ori_token[i:] for i in range(1, len(ori_token))]
|
88 |
+
# print(candidate)
|
89 |
+
# 最多只替换一次
|
90 |
+
new_strings += [[current_text[0].replace(ori_token, c, 1),current_text[1]] for c in candidate]
|
91 |
+
|
92 |
+
# ori_tensor_pos = current_tensor.eq(int(t)).nonzero()
|
93 |
+
#
|
94 |
+
# for p in ori_tensor_pos:
|
95 |
+
# new_strings += [current_string[:p] + c + current_string[p + 1:] for c in candidate]
|
96 |
+
# 存在一个有效的改动就返回
|
97 |
+
if len(new_strings) > 1:
|
98 |
+
return new_strings
|
99 |
+
return new_strings
|
not_pad_0.5/config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"finetuning_task": "sst2",
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "negative",
|
15 |
+
"1": "positive"
|
16 |
+
},
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"label2id": {
|
20 |
+
"negative": 0,
|
21 |
+
"positive": 1
|
22 |
+
},
|
23 |
+
"layer_norm_eps": 1e-12,
|
24 |
+
"max_position_embeddings": 512,
|
25 |
+
"model_type": "bert",
|
26 |
+
"num_attention_heads": 12,
|
27 |
+
"num_hidden_layers": 12,
|
28 |
+
"pad_token_id": 0,
|
29 |
+
"position_embedding_type": "absolute",
|
30 |
+
"problem_type": "single_label_classification",
|
31 |
+
"skim_coefficient": 0.5,
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.26.1",
|
34 |
+
"type_vocab_size": 2,
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 30522
|
37 |
+
}
|
not_pad_0.5/log.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
not_pad_0.5/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b49ee701f19e2ad22efc89e07452b0aed5c3075800004d2a10b63308a29f4363
|
3 |
+
size 466610485
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
argparse
|
2 |
+
logging
|
3 |
+
math
|
4 |
+
os
|
5 |
+
random
|
6 |
+
tqdm
|
7 |
+
gradio
|
8 |
+
transformers
|
9 |
+
accelerate
|
10 |
+
torch
|
11 |
+
datetime
|
12 |
+
time
|
13 |
+
copy
|
14 |
+
numpy
|
15 |
+
string
|
16 |
+
sklearn
|
17 |
+
nltk
|
18 |
+
torchprofile
|
test_module/__init__.py
ADDED
File without changes
|
test_module/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (151 Bytes). View file
|
|
test_module/__pycache__/modeling_skim_predictor.cpython-37.pyc
ADDED
Binary file (1.9 kB). View file
|
|
test_module/__pycache__/modeling_transkimer.cpython-37.pyc
ADDED
Binary file (57 kB). View file
|
|
test_module/__pycache__/modeling_transkimer_roberta.cpython-37.pyc
ADDED
Binary file (45.5 kB). View file
|
|
test_module/__pycache__/modeling_utils.cpython-37.pyc
ADDED
Binary file (3.71 kB). View file
|
|
test_module/modeling_skim_predictor.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
import torch
|
3 |
+
|
4 |
+
def init_skim_predictor(module_list, mean_bias=5.0):
|
5 |
+
for module in module_list:
|
6 |
+
if not isinstance(module, torch.nn.Linear):
|
7 |
+
raise ValueError("only support initialization of linear skim predictor")
|
8 |
+
|
9 |
+
# module.bias.data[1].fill_(5.0)
|
10 |
+
# module.bias.data[0].fill_(-5.0)
|
11 |
+
# module.weight.data.zero_()
|
12 |
+
module.bias.data[1].normal_(mean=mean_bias, std=0.02)
|
13 |
+
module.bias.data[0].normal_(mean=-mean_bias, std=0.02)
|
14 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
15 |
+
|
16 |
+
module._skim_initialized = True
|
17 |
+
|
18 |
+
class SkimPredictor(nn.Module):
|
19 |
+
def __init__(self, input_size, output_size, hidden_size=None):
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
self.hidden_size = hidden_size if hidden_size else input_size
|
23 |
+
|
24 |
+
self.predictor = nn.Sequential(
|
25 |
+
nn.LayerNorm(input_size),
|
26 |
+
nn.Linear(input_size, self.hidden_size),
|
27 |
+
# nn.GELU(),
|
28 |
+
# nn.Linear(self.hidden_size, self.hidden_size),
|
29 |
+
nn.LayerNorm(self.hidden_size),
|
30 |
+
nn.GELU(),
|
31 |
+
nn.Linear(self.hidden_size, output_size),
|
32 |
+
)
|
33 |
+
|
34 |
+
init_skim_predictor([self.predictor[-1]])
|
35 |
+
|
36 |
+
def forward(self, hidden_states):
|
37 |
+
return self.predictor(hidden_states)
|
38 |
+
|
39 |
+
def test_init_skim_predictor():
|
40 |
+
num_layers = 12
|
41 |
+
|
42 |
+
skim_predictors = torch.nn.ModuleList([torch.nn.Linear(768,2) for _ in range(num_layers)])
|
43 |
+
init_skim_predictor(skim_predictors)
|
44 |
+
|
45 |
+
print(skim_predictors[0].weight, skim_predictors[0].bias)
|
46 |
+
|
47 |
+
rand_input = torch.rand((4, 16, 768))
|
48 |
+
print(skim_predictors[0](rand_input))
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
test_init_skim_predictor()
|
test_module/modeling_transkimer.py
ADDED
@@ -0,0 +1,2002 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch BERT model. """
|
17 |
+
|
18 |
+
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
import warnings
|
22 |
+
from dataclasses import dataclass
|
23 |
+
from typing import Optional, Tuple
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from packaging import version
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.file_utils import (
|
33 |
+
ModelOutput,
|
34 |
+
add_code_sample_docstrings,
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
replace_return_docstrings,
|
38 |
+
)
|
39 |
+
from transformers.modeling_outputs import (
|
40 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
41 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
42 |
+
CausalLMOutputWithCrossAttentions,
|
43 |
+
MaskedLMOutput,
|
44 |
+
MultipleChoiceModelOutput,
|
45 |
+
NextSentencePredictorOutput,
|
46 |
+
QuestionAnsweringModelOutput,
|
47 |
+
SequenceClassifierOutput,
|
48 |
+
TokenClassifierOutput,
|
49 |
+
)
|
50 |
+
from transformers.modeling_utils import (
|
51 |
+
PreTrainedModel,
|
52 |
+
apply_chunking_to_forward,
|
53 |
+
find_pruneable_heads_and_indices,
|
54 |
+
prune_linear_layer,
|
55 |
+
)
|
56 |
+
from transformers.utils import logging
|
57 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
58 |
+
|
59 |
+
from .modeling_skim_predictor import SkimPredictor
|
60 |
+
from .modeling_utils import BaseModelOutputWithPastAndCrossAttentionsSkim, BaseModelOutputWithPoolingAndCrossAttentionsSkim, MaskedLMOutputSkim, QuestionAnsweringModelOutputSkim, SequenceClassifierOutputSkim, convert_softmax_mask_to_digit, trunc_with_mask_batched, masked_softmax
|
61 |
+
|
62 |
+
logger = logging.get_logger(__name__)
|
63 |
+
|
64 |
+
_CHECKPOINT_FOR_DOC = "bert-base-uncased"
|
65 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
66 |
+
_TOKENIZER_FOR_DOC = "BertTokenizer"
|
67 |
+
|
68 |
+
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
69 |
+
"bert-base-uncased",
|
70 |
+
"bert-large-uncased",
|
71 |
+
"bert-base-cased",
|
72 |
+
"bert-large-cased",
|
73 |
+
"bert-base-multilingual-uncased",
|
74 |
+
"bert-base-multilingual-cased",
|
75 |
+
"bert-base-chinese",
|
76 |
+
"bert-base-german-cased",
|
77 |
+
"bert-large-uncased-whole-word-masking",
|
78 |
+
"bert-large-cased-whole-word-masking",
|
79 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad",
|
80 |
+
"bert-large-cased-whole-word-masking-finetuned-squad",
|
81 |
+
"bert-base-cased-finetuned-mrpc",
|
82 |
+
"bert-base-german-dbmdz-cased",
|
83 |
+
"bert-base-german-dbmdz-uncased",
|
84 |
+
"cl-tohoku/bert-base-japanese",
|
85 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking",
|
86 |
+
"cl-tohoku/bert-base-japanese-char",
|
87 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
|
88 |
+
"TurkuNLP/bert-base-finnish-cased-v1",
|
89 |
+
"TurkuNLP/bert-base-finnish-uncased-v1",
|
90 |
+
"wietsedv/bert-base-dutch-cased",
|
91 |
+
# See all BERT models at https://huggingface.co/models?filter=bert
|
92 |
+
]
|
93 |
+
|
94 |
+
|
95 |
+
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
|
96 |
+
"""Load tf checkpoints in a pytorch model."""
|
97 |
+
try:
|
98 |
+
import re
|
99 |
+
|
100 |
+
import numpy as np
|
101 |
+
import tensorflow as tf
|
102 |
+
except ImportError:
|
103 |
+
logger.error(
|
104 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
105 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
106 |
+
)
|
107 |
+
raise
|
108 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
109 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
110 |
+
# Load weights from TF model
|
111 |
+
init_vars = tf.train.list_variables(tf_path)
|
112 |
+
names = []
|
113 |
+
arrays = []
|
114 |
+
for name, shape in init_vars:
|
115 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
116 |
+
array = tf.train.load_variable(tf_path, name)
|
117 |
+
names.append(name)
|
118 |
+
arrays.append(array)
|
119 |
+
|
120 |
+
for name, array in zip(names, arrays):
|
121 |
+
name = name.split("/")
|
122 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
123 |
+
# which are not required for using pretrained model
|
124 |
+
if any(
|
125 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
126 |
+
for n in name
|
127 |
+
):
|
128 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
129 |
+
continue
|
130 |
+
pointer = model
|
131 |
+
for m_name in name:
|
132 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
133 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
134 |
+
else:
|
135 |
+
scope_names = [m_name]
|
136 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
137 |
+
pointer = getattr(pointer, "weight")
|
138 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
139 |
+
pointer = getattr(pointer, "bias")
|
140 |
+
elif scope_names[0] == "output_weights":
|
141 |
+
pointer = getattr(pointer, "weight")
|
142 |
+
elif scope_names[0] == "squad":
|
143 |
+
pointer = getattr(pointer, "classifier")
|
144 |
+
else:
|
145 |
+
try:
|
146 |
+
pointer = getattr(pointer, scope_names[0])
|
147 |
+
except AttributeError:
|
148 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
149 |
+
continue
|
150 |
+
if len(scope_names) >= 2:
|
151 |
+
num = int(scope_names[1])
|
152 |
+
pointer = pointer[num]
|
153 |
+
if m_name[-11:] == "_embeddings":
|
154 |
+
pointer = getattr(pointer, "weight")
|
155 |
+
elif m_name == "kernel":
|
156 |
+
array = np.transpose(array)
|
157 |
+
try:
|
158 |
+
assert (
|
159 |
+
pointer.shape == array.shape
|
160 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
161 |
+
except AssertionError as e:
|
162 |
+
e.args += (pointer.shape, array.shape)
|
163 |
+
raise
|
164 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
165 |
+
pointer.data = torch.from_numpy(array)
|
166 |
+
return model
|
167 |
+
|
168 |
+
|
169 |
+
class BertEmbeddings(nn.Module):
|
170 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
171 |
+
|
172 |
+
def __init__(self, config):
|
173 |
+
super().__init__()
|
174 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
175 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
176 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
177 |
+
|
178 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
179 |
+
# any TensorFlow checkpoint file
|
180 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
181 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
182 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
183 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
184 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
185 |
+
if version.parse(torch.__version__) > version.parse("1.6.0"):
|
186 |
+
self.register_buffer(
|
187 |
+
"token_type_ids",
|
188 |
+
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
|
189 |
+
persistent=False,
|
190 |
+
)
|
191 |
+
|
192 |
+
def forward(
|
193 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
194 |
+
):
|
195 |
+
if input_ids is not None:
|
196 |
+
input_shape = input_ids.size()
|
197 |
+
else:
|
198 |
+
input_shape = inputs_embeds.size()[:-1]
|
199 |
+
|
200 |
+
seq_length = input_shape[1]
|
201 |
+
|
202 |
+
if position_ids is None:
|
203 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
204 |
+
|
205 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
206 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
207 |
+
# issue #5664
|
208 |
+
if token_type_ids is None:
|
209 |
+
if hasattr(self, "token_type_ids"):
|
210 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
211 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
212 |
+
token_type_ids = buffered_token_type_ids_expanded
|
213 |
+
else:
|
214 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
215 |
+
|
216 |
+
if inputs_embeds is None:
|
217 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
218 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
219 |
+
|
220 |
+
embeddings = inputs_embeds + token_type_embeddings
|
221 |
+
if self.position_embedding_type == "absolute":
|
222 |
+
position_embeddings = self.position_embeddings(position_ids)
|
223 |
+
embeddings += position_embeddings
|
224 |
+
embeddings = self.LayerNorm(embeddings)
|
225 |
+
embeddings = self.dropout(embeddings)
|
226 |
+
return embeddings
|
227 |
+
|
228 |
+
|
229 |
+
class BertSelfAttention(nn.Module):
|
230 |
+
def __init__(self, config):
|
231 |
+
super().__init__()
|
232 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
233 |
+
raise ValueError(
|
234 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
235 |
+
f"heads ({config.num_attention_heads})"
|
236 |
+
)
|
237 |
+
|
238 |
+
self.num_attention_heads = config.num_attention_heads
|
239 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
240 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
241 |
+
|
242 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
243 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
244 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
245 |
+
|
246 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
247 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
248 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
249 |
+
self.max_position_embeddings = config.max_position_embeddings
|
250 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
251 |
+
|
252 |
+
self.is_decoder = config.is_decoder
|
253 |
+
|
254 |
+
def transpose_for_scores(self, x):
|
255 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
256 |
+
x = x.view(*new_x_shape)
|
257 |
+
return x.permute(0, 2, 1, 3)
|
258 |
+
|
259 |
+
def forward(
|
260 |
+
self,
|
261 |
+
hidden_states,
|
262 |
+
attention_mask=None,
|
263 |
+
head_mask=None,
|
264 |
+
encoder_hidden_states=None,
|
265 |
+
encoder_attention_mask=None,
|
266 |
+
past_key_value=None,
|
267 |
+
output_attentions=False,
|
268 |
+
skim_mask=None,
|
269 |
+
):
|
270 |
+
mixed_query_layer = self.query(hidden_states)
|
271 |
+
|
272 |
+
# If this is instantiated as a cross-attention module, the keys
|
273 |
+
# and values come from an encoder; the attention mask needs to be
|
274 |
+
# such that the encoder's padding tokens are not attended to.
|
275 |
+
is_cross_attention = encoder_hidden_states is not None
|
276 |
+
|
277 |
+
if is_cross_attention and past_key_value is not None:
|
278 |
+
# reuse k,v, cross_attentions
|
279 |
+
key_layer = past_key_value[0]
|
280 |
+
value_layer = past_key_value[1]
|
281 |
+
attention_mask = encoder_attention_mask
|
282 |
+
elif is_cross_attention:
|
283 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
284 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
285 |
+
attention_mask = encoder_attention_mask
|
286 |
+
elif past_key_value is not None:
|
287 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
288 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
289 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
290 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
291 |
+
else:
|
292 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
293 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
294 |
+
|
295 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
296 |
+
|
297 |
+
if self.is_decoder:
|
298 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
299 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
300 |
+
# key/value_states (first "if" case)
|
301 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
302 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
303 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
304 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
305 |
+
past_key_value = (key_layer, value_layer)
|
306 |
+
|
307 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
308 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
309 |
+
|
310 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
311 |
+
seq_length = hidden_states.size()[1]
|
312 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
313 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
314 |
+
distance = position_ids_l - position_ids_r
|
315 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
316 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
317 |
+
|
318 |
+
if self.position_embedding_type == "relative_key":
|
319 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
320 |
+
attention_scores = attention_scores + relative_position_scores
|
321 |
+
elif self.position_embedding_type == "relative_key_query":
|
322 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
323 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
324 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
325 |
+
|
326 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
327 |
+
if attention_mask is not None:
|
328 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
329 |
+
attention_scores = attention_scores + attention_mask
|
330 |
+
|
331 |
+
# Normalize the attention scores to probabilities.
|
332 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
333 |
+
# attention_probs = masked_softmax(attention_scores, skim_mask, dim=3)
|
334 |
+
|
335 |
+
# mask attention probs during training for skimming
|
336 |
+
attention_probs = attention_probs * skim_mask[:, None, None, :]
|
337 |
+
|
338 |
+
# This is actually dropping out entire tokens to attend to, which might
|
339 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
340 |
+
attention_probs = self.dropout(attention_probs)
|
341 |
+
|
342 |
+
# Mask heads if we want to
|
343 |
+
if head_mask is not None:
|
344 |
+
attention_probs = attention_probs * head_mask
|
345 |
+
|
346 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
347 |
+
|
348 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
349 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
350 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
351 |
+
|
352 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
353 |
+
|
354 |
+
if self.is_decoder:
|
355 |
+
outputs = outputs + (past_key_value,)
|
356 |
+
return outputs
|
357 |
+
|
358 |
+
|
359 |
+
class BertSelfOutput(nn.Module):
|
360 |
+
def __init__(self, config):
|
361 |
+
super().__init__()
|
362 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
363 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
364 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
365 |
+
|
366 |
+
def forward(self, hidden_states, input_tensor):
|
367 |
+
hidden_states = self.dense(hidden_states)
|
368 |
+
hidden_states = self.dropout(hidden_states)
|
369 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
370 |
+
return hidden_states
|
371 |
+
|
372 |
+
|
373 |
+
class BertAttention(nn.Module):
|
374 |
+
def __init__(self, config):
|
375 |
+
super().__init__()
|
376 |
+
self.self = BertSelfAttention(config)
|
377 |
+
self.output = BertSelfOutput(config)
|
378 |
+
self.pruned_heads = set()
|
379 |
+
|
380 |
+
def prune_heads(self, heads):
|
381 |
+
if len(heads) == 0:
|
382 |
+
return
|
383 |
+
heads, index = find_pruneable_heads_and_indices(
|
384 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
385 |
+
)
|
386 |
+
|
387 |
+
# Prune linear layers
|
388 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
389 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
390 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
391 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
392 |
+
|
393 |
+
# Update hyper params and store pruned heads
|
394 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
395 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
396 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
397 |
+
|
398 |
+
def forward(
|
399 |
+
self,
|
400 |
+
hidden_states,
|
401 |
+
attention_mask=None,
|
402 |
+
head_mask=None,
|
403 |
+
encoder_hidden_states=None,
|
404 |
+
encoder_attention_mask=None,
|
405 |
+
past_key_value=None,
|
406 |
+
output_attentions=False,
|
407 |
+
skim_mask=None,
|
408 |
+
):
|
409 |
+
self_outputs = self.self(
|
410 |
+
hidden_states,
|
411 |
+
attention_mask,
|
412 |
+
head_mask,
|
413 |
+
encoder_hidden_states,
|
414 |
+
encoder_attention_mask,
|
415 |
+
past_key_value,
|
416 |
+
output_attentions,
|
417 |
+
skim_mask,
|
418 |
+
)
|
419 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
420 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
421 |
+
return outputs
|
422 |
+
|
423 |
+
|
424 |
+
class BertIntermediate(nn.Module):
|
425 |
+
def __init__(self, config):
|
426 |
+
super().__init__()
|
427 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
428 |
+
if isinstance(config.hidden_act, str):
|
429 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
430 |
+
else:
|
431 |
+
self.intermediate_act_fn = config.hidden_act
|
432 |
+
|
433 |
+
def forward(self, hidden_states):
|
434 |
+
hidden_states = self.dense(hidden_states)
|
435 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
436 |
+
return hidden_states
|
437 |
+
|
438 |
+
|
439 |
+
class BertOutput(nn.Module):
|
440 |
+
def __init__(self, config):
|
441 |
+
super().__init__()
|
442 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
443 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
444 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
445 |
+
|
446 |
+
def forward(self, hidden_states, input_tensor):
|
447 |
+
hidden_states = self.dense(hidden_states)
|
448 |
+
hidden_states = self.dropout(hidden_states)
|
449 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
450 |
+
return hidden_states
|
451 |
+
|
452 |
+
|
453 |
+
class BertLayer(nn.Module):
|
454 |
+
def __init__(self, config):
|
455 |
+
super().__init__()
|
456 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
457 |
+
self.seq_len_dim = 1
|
458 |
+
self.attention = BertAttention(config)
|
459 |
+
self.is_decoder = config.is_decoder
|
460 |
+
self.add_cross_attention = config.add_cross_attention
|
461 |
+
if self.add_cross_attention:
|
462 |
+
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
|
463 |
+
self.crossattention = BertAttention(config)
|
464 |
+
self.intermediate = BertIntermediate(config)
|
465 |
+
self.output = BertOutput(config)
|
466 |
+
|
467 |
+
def forward(
|
468 |
+
self,
|
469 |
+
hidden_states,
|
470 |
+
attention_mask=None,
|
471 |
+
head_mask=None,
|
472 |
+
encoder_hidden_states=None,
|
473 |
+
encoder_attention_mask=None,
|
474 |
+
past_key_value=None,
|
475 |
+
output_attentions=False,
|
476 |
+
skim_mask=None,
|
477 |
+
):
|
478 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
479 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
480 |
+
self_attention_outputs = self.attention(
|
481 |
+
hidden_states,
|
482 |
+
attention_mask,
|
483 |
+
head_mask,
|
484 |
+
output_attentions=output_attentions,
|
485 |
+
past_key_value=self_attn_past_key_value,
|
486 |
+
skim_mask=skim_mask,
|
487 |
+
)
|
488 |
+
attention_output = self_attention_outputs[0]
|
489 |
+
|
490 |
+
# if decoder, the last output is tuple of self-attn cache
|
491 |
+
if self.is_decoder:
|
492 |
+
outputs = self_attention_outputs[1:-1]
|
493 |
+
present_key_value = self_attention_outputs[-1]
|
494 |
+
else:
|
495 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
496 |
+
|
497 |
+
cross_attn_present_key_value = None
|
498 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
499 |
+
assert hasattr(
|
500 |
+
self, "crossattention"
|
501 |
+
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
502 |
+
|
503 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
504 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
505 |
+
cross_attention_outputs = self.crossattention(
|
506 |
+
attention_output,
|
507 |
+
attention_mask,
|
508 |
+
head_mask,
|
509 |
+
encoder_hidden_states,
|
510 |
+
encoder_attention_mask,
|
511 |
+
cross_attn_past_key_value,
|
512 |
+
output_attentions,
|
513 |
+
)
|
514 |
+
attention_output = cross_attention_outputs[0]
|
515 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
516 |
+
|
517 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
518 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
519 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
520 |
+
|
521 |
+
layer_output = apply_chunking_to_forward(
|
522 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
523 |
+
)
|
524 |
+
outputs = (layer_output,) + outputs
|
525 |
+
|
526 |
+
# if decoder, return the attn key/values as the last output
|
527 |
+
if self.is_decoder:
|
528 |
+
outputs = outputs + (present_key_value,)
|
529 |
+
|
530 |
+
return outputs
|
531 |
+
|
532 |
+
def feed_forward_chunk(self, attention_output):
|
533 |
+
intermediate_output = self.intermediate(attention_output)
|
534 |
+
layer_output = self.output(intermediate_output, attention_output)
|
535 |
+
return layer_output
|
536 |
+
|
537 |
+
|
538 |
+
class BertEncoder(nn.Module):
|
539 |
+
def __init__(self, config):
|
540 |
+
super().__init__()
|
541 |
+
self.config = config
|
542 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
543 |
+
|
544 |
+
# skim predictors for each layer
|
545 |
+
self.skim_predictors = nn.ModuleList([SkimPredictor(config.hidden_size, 2) for _ in range(config.num_hidden_layers)])
|
546 |
+
# init_skim_predictor(self.skim_predictors)
|
547 |
+
|
548 |
+
def forward(
|
549 |
+
self,
|
550 |
+
hidden_states,
|
551 |
+
attention_mask=None,
|
552 |
+
head_mask=None,
|
553 |
+
encoder_hidden_states=None,
|
554 |
+
encoder_attention_mask=None,
|
555 |
+
past_key_values=None,
|
556 |
+
use_cache=None,
|
557 |
+
output_attentions=False,
|
558 |
+
output_hidden_states=False,
|
559 |
+
return_dict=True,
|
560 |
+
):
|
561 |
+
all_hidden_states = () if output_hidden_states else None
|
562 |
+
all_self_attentions = () if output_attentions else None
|
563 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
564 |
+
all_skim_mask = ()
|
565 |
+
|
566 |
+
next_decoder_cache = () if use_cache else None
|
567 |
+
|
568 |
+
forward_hidden_states = hidden_states.clone()
|
569 |
+
forward_skim_mask = None
|
570 |
+
|
571 |
+
|
572 |
+
for i, layer_module in enumerate(self.layer):
|
573 |
+
if output_hidden_states:
|
574 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
575 |
+
|
576 |
+
# if gumbel_softmax:
|
577 |
+
# # print('gradient')
|
578 |
+
# skim_mask = nn.functional.gumbel_softmax(self.skim_predictors[i](hidden_states[:,1:,:]), hard=True, tau=1)
|
579 |
+
# else:
|
580 |
+
# print('not gradient')
|
581 |
+
logits = nn.functional.softmax(self.skim_predictors[i](hidden_states[:,1:,:]),dim=-1)
|
582 |
+
# print(logits)
|
583 |
+
index = logits.max(dim=-1, keepdim=True)[1]
|
584 |
+
# print(index)
|
585 |
+
skim_mask = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(-1, index, 1.0)
|
586 |
+
# print(skim_mask)
|
587 |
+
|
588 |
+
skim_mask = skim_mask[:,:,1]
|
589 |
+
skim_mask_with_cls = torch.ones(skim_mask.shape[0], skim_mask.shape[1]+1, device=skim_mask.device)
|
590 |
+
skim_mask_with_cls[:,1:] = skim_mask
|
591 |
+
skim_mask = skim_mask_with_cls
|
592 |
+
# multiple current layer skim mask with last layer skim mask
|
593 |
+
# to gurantee skimmed tokens are never recovered
|
594 |
+
if all_skim_mask and hidden_states.shape[0] != 1:
|
595 |
+
skim_mask = skim_mask * all_skim_mask[-1]
|
596 |
+
all_skim_mask += (skim_mask, )
|
597 |
+
|
598 |
+
# 最大的一个不同之处:就是这个trunc掉了
|
599 |
+
if hidden_states.shape[0] == 1:
|
600 |
+
bool_skim_mask = skim_mask.to(dtype=torch.bool)
|
601 |
+
hidden_states = trunc_with_mask_batched(hidden_states, bool_skim_mask, 1)
|
602 |
+
attention_mask = trunc_with_mask_batched(attention_mask, bool_skim_mask, 3)
|
603 |
+
skim_mask = trunc_with_mask_batched(skim_mask, bool_skim_mask, 1)
|
604 |
+
if forward_skim_mask is None:
|
605 |
+
forward_skim_mask = torch.ones_like(bool_skim_mask).to(dtype=torch.bool)
|
606 |
+
|
607 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
608 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
609 |
+
|
610 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
611 |
+
|
612 |
+
if use_cache:
|
613 |
+
logger.warning(
|
614 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
615 |
+
"`use_cache=False`..."
|
616 |
+
)
|
617 |
+
use_cache = False
|
618 |
+
|
619 |
+
def create_custom_forward(module):
|
620 |
+
def custom_forward(*inputs):
|
621 |
+
return module(*inputs, past_key_value, output_attentions)
|
622 |
+
|
623 |
+
return custom_forward
|
624 |
+
|
625 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
626 |
+
create_custom_forward(layer_module),
|
627 |
+
hidden_states,
|
628 |
+
attention_mask,
|
629 |
+
layer_head_mask,
|
630 |
+
encoder_hidden_states,
|
631 |
+
encoder_attention_mask,
|
632 |
+
)
|
633 |
+
else:
|
634 |
+
layer_outputs = layer_module(
|
635 |
+
hidden_states,
|
636 |
+
attention_mask,
|
637 |
+
layer_head_mask,
|
638 |
+
encoder_hidden_states,
|
639 |
+
encoder_attention_mask,
|
640 |
+
past_key_value,
|
641 |
+
output_attentions,
|
642 |
+
skim_mask,
|
643 |
+
)
|
644 |
+
|
645 |
+
hidden_states = layer_outputs[0]
|
646 |
+
# print(hidden_states.shape)
|
647 |
+
if hidden_states.shape[0] == 1:
|
648 |
+
forward_skim_mask[forward_skim_mask.clone()] = bool_skim_mask
|
649 |
+
forward_hidden_states[forward_skim_mask] = hidden_states
|
650 |
+
else:
|
651 |
+
forward_hidden_states = forward_hidden_states * (1-skim_mask.view(*skim_mask.shape,1)) + hidden_states * skim_mask.view(*skim_mask.shape,1)
|
652 |
+
|
653 |
+
if use_cache:
|
654 |
+
next_decoder_cache += (layer_outputs[-1],)
|
655 |
+
if output_attentions:
|
656 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
657 |
+
if self.config.add_cross_attention:
|
658 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
659 |
+
|
660 |
+
if output_hidden_states:
|
661 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
662 |
+
|
663 |
+
|
664 |
+
if not return_dict:
|
665 |
+
return tuple(
|
666 |
+
v
|
667 |
+
for v in [
|
668 |
+
forward_hidden_states,
|
669 |
+
next_decoder_cache,
|
670 |
+
all_hidden_states,
|
671 |
+
all_self_attentions,
|
672 |
+
all_cross_attentions,
|
673 |
+
]
|
674 |
+
if v is not None
|
675 |
+
)
|
676 |
+
return BaseModelOutputWithPastAndCrossAttentionsSkim(
|
677 |
+
last_hidden_state=forward_hidden_states,
|
678 |
+
past_key_values=next_decoder_cache,
|
679 |
+
hidden_states=all_hidden_states,
|
680 |
+
attentions=all_self_attentions,
|
681 |
+
cross_attentions=all_cross_attentions,
|
682 |
+
attention_mask=attention_mask,
|
683 |
+
skim_mask=all_skim_mask,
|
684 |
+
)
|
685 |
+
|
686 |
+
|
687 |
+
class BertPooler(nn.Module):
|
688 |
+
def __init__(self, config):
|
689 |
+
super().__init__()
|
690 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
691 |
+
self.activation = nn.Tanh()
|
692 |
+
|
693 |
+
def forward(self, hidden_states):
|
694 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
695 |
+
# to the first token.
|
696 |
+
first_token_tensor = hidden_states[:, 0]
|
697 |
+
pooled_output = self.dense(first_token_tensor)
|
698 |
+
pooled_output = self.activation(pooled_output)
|
699 |
+
return pooled_output
|
700 |
+
|
701 |
+
|
702 |
+
class BertPredictionHeadTransform(nn.Module):
|
703 |
+
def __init__(self, config):
|
704 |
+
super().__init__()
|
705 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
706 |
+
if isinstance(config.hidden_act, str):
|
707 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
708 |
+
else:
|
709 |
+
self.transform_act_fn = config.hidden_act
|
710 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
711 |
+
|
712 |
+
def forward(self, hidden_states):
|
713 |
+
hidden_states = self.dense(hidden_states)
|
714 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
715 |
+
hidden_states = self.LayerNorm(hidden_states)
|
716 |
+
return hidden_states
|
717 |
+
|
718 |
+
|
719 |
+
class BertLMPredictionHead(nn.Module):
|
720 |
+
def __init__(self, config):
|
721 |
+
super().__init__()
|
722 |
+
self.transform = BertPredictionHeadTransform(config)
|
723 |
+
|
724 |
+
# The output weights are the same as the input embeddings, but there is
|
725 |
+
# an output-only bias for each token.
|
726 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
727 |
+
|
728 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
729 |
+
|
730 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
731 |
+
self.decoder.bias = self.bias
|
732 |
+
|
733 |
+
def forward(self, hidden_states):
|
734 |
+
hidden_states = self.transform(hidden_states)
|
735 |
+
hidden_states = self.decoder(hidden_states)
|
736 |
+
return hidden_states
|
737 |
+
|
738 |
+
|
739 |
+
class BertOnlyMLMHead(nn.Module):
|
740 |
+
def __init__(self, config):
|
741 |
+
super().__init__()
|
742 |
+
self.predictions = BertLMPredictionHead(config)
|
743 |
+
|
744 |
+
def forward(self, sequence_output):
|
745 |
+
prediction_scores = self.predictions(sequence_output)
|
746 |
+
return prediction_scores
|
747 |
+
|
748 |
+
|
749 |
+
class BertOnlyNSPHead(nn.Module):
|
750 |
+
def __init__(self, config):
|
751 |
+
super().__init__()
|
752 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
753 |
+
|
754 |
+
def forward(self, pooled_output):
|
755 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
756 |
+
return seq_relationship_score
|
757 |
+
|
758 |
+
|
759 |
+
class BertPreTrainingHeads(nn.Module):
|
760 |
+
def __init__(self, config):
|
761 |
+
super().__init__()
|
762 |
+
self.predictions = BertLMPredictionHead(config)
|
763 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
764 |
+
|
765 |
+
def forward(self, sequence_output, pooled_output):
|
766 |
+
prediction_scores = self.predictions(sequence_output)
|
767 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
768 |
+
return prediction_scores, seq_relationship_score
|
769 |
+
|
770 |
+
|
771 |
+
class BertPreTrainedModel(PreTrainedModel):
|
772 |
+
"""
|
773 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
774 |
+
models.
|
775 |
+
"""
|
776 |
+
|
777 |
+
config_class = BertConfig
|
778 |
+
load_tf_weights = load_tf_weights_in_bert
|
779 |
+
base_model_prefix = "bert"
|
780 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
781 |
+
|
782 |
+
def _init_weights(self, module):
|
783 |
+
"""Initialize the weights"""
|
784 |
+
if hasattr(module, '_skim_initialized') and module._skim_initialized:
|
785 |
+
return
|
786 |
+
if isinstance(module, nn.Linear):
|
787 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
788 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
789 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
790 |
+
if module.bias is not None:
|
791 |
+
module.bias.data.zero_()
|
792 |
+
elif isinstance(module, nn.Embedding):
|
793 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
794 |
+
if module.padding_idx is not None:
|
795 |
+
module.weight.data[module.padding_idx].zero_()
|
796 |
+
elif isinstance(module, nn.LayerNorm):
|
797 |
+
module.bias.data.zero_()
|
798 |
+
module.weight.data.fill_(1.0)
|
799 |
+
|
800 |
+
|
801 |
+
@dataclass
|
802 |
+
class BertForPreTrainingOutput(ModelOutput):
|
803 |
+
"""
|
804 |
+
Output type of :class:`~transformers.BertForPreTraining`.
|
805 |
+
|
806 |
+
Args:
|
807 |
+
loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
|
808 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
809 |
+
(classification) loss.
|
810 |
+
prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
811 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
812 |
+
seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
|
813 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
814 |
+
before SoftMax).
|
815 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
816 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
817 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
818 |
+
|
819 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
820 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
821 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
|
822 |
+
sequence_length, sequence_length)`.
|
823 |
+
|
824 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
825 |
+
heads.
|
826 |
+
"""
|
827 |
+
|
828 |
+
loss: Optional[torch.FloatTensor] = None
|
829 |
+
prediction_logits: torch.FloatTensor = None
|
830 |
+
seq_relationship_logits: torch.FloatTensor = None
|
831 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
832 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
833 |
+
|
834 |
+
|
835 |
+
BERT_START_DOCSTRING = r"""
|
836 |
+
|
837 |
+
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
838 |
+
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
839 |
+
pruning heads etc.)
|
840 |
+
|
841 |
+
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
842 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
843 |
+
general usage and behavior.
|
844 |
+
|
845 |
+
Parameters:
|
846 |
+
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
|
847 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
848 |
+
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
849 |
+
weights.
|
850 |
+
"""
|
851 |
+
|
852 |
+
BERT_INPUTS_DOCSTRING = r"""
|
853 |
+
Args:
|
854 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
855 |
+
Indices of input sequence tokens in the vocabulary.
|
856 |
+
|
857 |
+
Indices can be obtained using :class:`~transformers.BertTokenizer`. See
|
858 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
859 |
+
details.
|
860 |
+
|
861 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
862 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
863 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
864 |
+
|
865 |
+
- 1 for tokens that are **not masked**,
|
866 |
+
- 0 for tokens that are **masked**.
|
867 |
+
|
868 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
869 |
+
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
870 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
871 |
+
1]``:
|
872 |
+
|
873 |
+
- 0 corresponds to a `sentence A` token,
|
874 |
+
- 1 corresponds to a `sentence B` token.
|
875 |
+
|
876 |
+
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
877 |
+
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
878 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
879 |
+
config.max_position_embeddings - 1]``.
|
880 |
+
|
881 |
+
`What are position IDs? <../glossary.html#position-ids>`_
|
882 |
+
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
883 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
884 |
+
|
885 |
+
- 1 indicates the head is **not masked**,
|
886 |
+
- 0 indicates the head is **masked**.
|
887 |
+
|
888 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
889 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
890 |
+
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
891 |
+
vectors than the model's internal embedding lookup matrix.
|
892 |
+
output_attentions (:obj:`bool`, `optional`):
|
893 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
894 |
+
tensors for more detail.
|
895 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
896 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
897 |
+
more detail.
|
898 |
+
return_dict (:obj:`bool`, `optional`):
|
899 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
900 |
+
"""
|
901 |
+
|
902 |
+
|
903 |
+
@add_start_docstrings(
|
904 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
905 |
+
BERT_START_DOCSTRING,
|
906 |
+
)
|
907 |
+
class BertModel(BertPreTrainedModel):
|
908 |
+
"""
|
909 |
+
|
910 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
911 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
912 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
913 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
914 |
+
|
915 |
+
To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration
|
916 |
+
set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder`
|
917 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
918 |
+
input to the forward pass.
|
919 |
+
"""
|
920 |
+
|
921 |
+
def __init__(self, config, add_pooling_layer=True):
|
922 |
+
super().__init__(config)
|
923 |
+
self.config = config
|
924 |
+
|
925 |
+
self.embeddings = BertEmbeddings(config)
|
926 |
+
self.encoder = BertEncoder(config)
|
927 |
+
|
928 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
929 |
+
|
930 |
+
self.init_weights()
|
931 |
+
|
932 |
+
def get_input_embeddings(self):
|
933 |
+
return self.embeddings.word_embeddings
|
934 |
+
|
935 |
+
def set_input_embeddings(self, value):
|
936 |
+
self.embeddings.word_embeddings = value
|
937 |
+
|
938 |
+
def _prune_heads(self, heads_to_prune):
|
939 |
+
"""
|
940 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
941 |
+
class PreTrainedModel
|
942 |
+
"""
|
943 |
+
for layer, heads in heads_to_prune.items():
|
944 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
945 |
+
|
946 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
947 |
+
@add_code_sample_docstrings(
|
948 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
949 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
950 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
951 |
+
config_class=_CONFIG_FOR_DOC,
|
952 |
+
)
|
953 |
+
def forward(
|
954 |
+
self,
|
955 |
+
input_ids=None,
|
956 |
+
attention_mask=None,
|
957 |
+
token_type_ids=None,
|
958 |
+
position_ids=None,
|
959 |
+
head_mask=None,
|
960 |
+
inputs_embeds=None,
|
961 |
+
encoder_hidden_states=None,
|
962 |
+
encoder_attention_mask=None,
|
963 |
+
past_key_values=None,
|
964 |
+
use_cache=None,
|
965 |
+
output_attentions=None,
|
966 |
+
output_hidden_states=None,
|
967 |
+
return_dict=None,
|
968 |
+
):
|
969 |
+
r"""
|
970 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
971 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
972 |
+
the model is configured as a decoder.
|
973 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
974 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
975 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
976 |
+
|
977 |
+
- 1 for tokens that are **not masked**,
|
978 |
+
- 0 for tokens that are **masked**.
|
979 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
980 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
981 |
+
|
982 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
983 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
984 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
985 |
+
use_cache (:obj:`bool`, `optional`):
|
986 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
987 |
+
decoding (see :obj:`past_key_values`).
|
988 |
+
"""
|
989 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
990 |
+
output_hidden_states = (
|
991 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
992 |
+
)
|
993 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
994 |
+
|
995 |
+
if self.config.is_decoder:
|
996 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
997 |
+
else:
|
998 |
+
use_cache = False
|
999 |
+
if input_ids is not None and inputs_embeds is not None:
|
1000 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1001 |
+
elif input_ids is not None:
|
1002 |
+
input_shape = input_ids.size()
|
1003 |
+
elif inputs_embeds is not None:
|
1004 |
+
input_shape = inputs_embeds.size()[:-1]
|
1005 |
+
else:
|
1006 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1007 |
+
|
1008 |
+
batch_size, seq_length = input_shape
|
1009 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1010 |
+
|
1011 |
+
# past_key_values_length
|
1012 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1013 |
+
|
1014 |
+
if attention_mask is None:
|
1015 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
1016 |
+
|
1017 |
+
if token_type_ids is None:
|
1018 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
1019 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
1020 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
1021 |
+
token_type_ids = buffered_token_type_ids_expanded
|
1022 |
+
else:
|
1023 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1024 |
+
|
1025 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1026 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1027 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
1028 |
+
|
1029 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1030 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1031 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
1032 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1033 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1034 |
+
if encoder_attention_mask is None:
|
1035 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1036 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1037 |
+
else:
|
1038 |
+
encoder_extended_attention_mask = None
|
1039 |
+
|
1040 |
+
# Prepare head mask if needed
|
1041 |
+
# 1.0 in head_mask indicate we keep the head
|
1042 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1043 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1044 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1045 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1046 |
+
|
1047 |
+
embedding_output = self.embeddings(
|
1048 |
+
input_ids=input_ids,
|
1049 |
+
position_ids=position_ids,
|
1050 |
+
token_type_ids=token_type_ids,
|
1051 |
+
inputs_embeds=inputs_embeds,
|
1052 |
+
past_key_values_length=past_key_values_length,
|
1053 |
+
)
|
1054 |
+
encoder_outputs = self.encoder(
|
1055 |
+
embedding_output,
|
1056 |
+
attention_mask=extended_attention_mask,
|
1057 |
+
head_mask=head_mask,
|
1058 |
+
encoder_hidden_states=encoder_hidden_states,
|
1059 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1060 |
+
past_key_values=past_key_values,
|
1061 |
+
use_cache=use_cache,
|
1062 |
+
output_attentions=output_attentions,
|
1063 |
+
output_hidden_states=output_hidden_states,
|
1064 |
+
return_dict=return_dict,
|
1065 |
+
)
|
1066 |
+
sequence_output = encoder_outputs[0]
|
1067 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1068 |
+
|
1069 |
+
if not return_dict:
|
1070 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1071 |
+
|
1072 |
+
return BaseModelOutputWithPoolingAndCrossAttentionsSkim(
|
1073 |
+
last_hidden_state=sequence_output,
|
1074 |
+
pooler_output=pooled_output,
|
1075 |
+
past_key_values=encoder_outputs.past_key_values,
|
1076 |
+
hidden_states=encoder_outputs.hidden_states,
|
1077 |
+
attentions=encoder_outputs.attentions,
|
1078 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1079 |
+
attention_mask=encoder_outputs.attention_mask,
|
1080 |
+
skim_mask=encoder_outputs.skim_mask,
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
|
1084 |
+
@add_start_docstrings(
|
1085 |
+
"""
|
1086 |
+
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
1087 |
+
sentence prediction (classification)` head.
|
1088 |
+
""",
|
1089 |
+
BERT_START_DOCSTRING,
|
1090 |
+
)
|
1091 |
+
class BertForPreTraining(BertPreTrainedModel):
|
1092 |
+
def __init__(self, config):
|
1093 |
+
super().__init__(config)
|
1094 |
+
|
1095 |
+
self.bert = BertModel(config)
|
1096 |
+
self.cls = BertPreTrainingHeads(config)
|
1097 |
+
|
1098 |
+
self.init_weights()
|
1099 |
+
|
1100 |
+
def get_output_embeddings(self):
|
1101 |
+
return self.cls.predictions.decoder
|
1102 |
+
|
1103 |
+
def set_output_embeddings(self, new_embeddings):
|
1104 |
+
self.cls.predictions.decoder = new_embeddings
|
1105 |
+
|
1106 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1107 |
+
@replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1108 |
+
def forward(
|
1109 |
+
self,
|
1110 |
+
input_ids=None,
|
1111 |
+
attention_mask=None,
|
1112 |
+
token_type_ids=None,
|
1113 |
+
position_ids=None,
|
1114 |
+
head_mask=None,
|
1115 |
+
inputs_embeds=None,
|
1116 |
+
labels=None,
|
1117 |
+
next_sentence_label=None,
|
1118 |
+
output_attentions=None,
|
1119 |
+
output_hidden_states=None,
|
1120 |
+
return_dict=None,
|
1121 |
+
):
|
1122 |
+
r"""
|
1123 |
+
labels (:obj:`torch.LongTensor` of shape ``(batch_size, sequence_length)``, `optional`):
|
1124 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1125 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1126 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1127 |
+
next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`):
|
1128 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1129 |
+
(see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``:
|
1130 |
+
|
1131 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1132 |
+
- 1 indicates sequence B is a random sequence.
|
1133 |
+
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
|
1134 |
+
Used to hide legacy arguments that have been deprecated.
|
1135 |
+
|
1136 |
+
Returns:
|
1137 |
+
|
1138 |
+
Example::
|
1139 |
+
|
1140 |
+
>>> from transformers import BertTokenizer, BertForPreTraining
|
1141 |
+
>>> import torch
|
1142 |
+
|
1143 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
1144 |
+
>>> model = BertForPreTraining.from_pretrained('bert-base-uncased')
|
1145 |
+
|
1146 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1147 |
+
>>> outputs = model(**inputs)
|
1148 |
+
|
1149 |
+
>>> prediction_logits = outputs.prediction_logits
|
1150 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
1151 |
+
"""
|
1152 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1153 |
+
|
1154 |
+
outputs = self.bert(
|
1155 |
+
input_ids,
|
1156 |
+
attention_mask=attention_mask,
|
1157 |
+
token_type_ids=token_type_ids,
|
1158 |
+
position_ids=position_ids,
|
1159 |
+
head_mask=head_mask,
|
1160 |
+
inputs_embeds=inputs_embeds,
|
1161 |
+
output_attentions=output_attentions,
|
1162 |
+
output_hidden_states=output_hidden_states,
|
1163 |
+
return_dict=return_dict,
|
1164 |
+
)
|
1165 |
+
|
1166 |
+
sequence_output, pooled_output = outputs[:2]
|
1167 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
1168 |
+
|
1169 |
+
total_loss = None
|
1170 |
+
if labels is not None and next_sentence_label is not None:
|
1171 |
+
loss_fct = CrossEntropyLoss()
|
1172 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1173 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
1174 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
1175 |
+
|
1176 |
+
if not return_dict:
|
1177 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
1178 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1179 |
+
|
1180 |
+
return BertForPreTrainingOutput(
|
1181 |
+
loss=total_loss,
|
1182 |
+
prediction_logits=prediction_scores,
|
1183 |
+
seq_relationship_logits=seq_relationship_score,
|
1184 |
+
hidden_states=outputs.hidden_states,
|
1185 |
+
attentions=outputs.attentions,
|
1186 |
+
)
|
1187 |
+
|
1188 |
+
|
1189 |
+
@add_start_docstrings(
|
1190 |
+
"""Bert Model with a `language modeling` head on top for CLM fine-tuning. """, BERT_START_DOCSTRING
|
1191 |
+
)
|
1192 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
1193 |
+
|
1194 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1195 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1196 |
+
|
1197 |
+
def __init__(self, config):
|
1198 |
+
super().__init__(config)
|
1199 |
+
|
1200 |
+
if not config.is_decoder:
|
1201 |
+
logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`")
|
1202 |
+
|
1203 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1204 |
+
self.cls = BertOnlyMLMHead(config)
|
1205 |
+
|
1206 |
+
self.init_weights()
|
1207 |
+
|
1208 |
+
def get_output_embeddings(self):
|
1209 |
+
return self.cls.predictions.decoder
|
1210 |
+
|
1211 |
+
def set_output_embeddings(self, new_embeddings):
|
1212 |
+
self.cls.predictions.decoder = new_embeddings
|
1213 |
+
|
1214 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1215 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
1216 |
+
def forward(
|
1217 |
+
self,
|
1218 |
+
input_ids=None,
|
1219 |
+
attention_mask=None,
|
1220 |
+
token_type_ids=None,
|
1221 |
+
position_ids=None,
|
1222 |
+
head_mask=None,
|
1223 |
+
inputs_embeds=None,
|
1224 |
+
encoder_hidden_states=None,
|
1225 |
+
encoder_attention_mask=None,
|
1226 |
+
labels=None,
|
1227 |
+
past_key_values=None,
|
1228 |
+
use_cache=None,
|
1229 |
+
output_attentions=None,
|
1230 |
+
output_hidden_states=None,
|
1231 |
+
return_dict=None,
|
1232 |
+
):
|
1233 |
+
r"""
|
1234 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
1235 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1236 |
+
the model is configured as a decoder.
|
1237 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1238 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1239 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
1240 |
+
|
1241 |
+
- 1 for tokens that are **not masked**,
|
1242 |
+
- 0 for tokens that are **masked**.
|
1243 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1244 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1245 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
1246 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
1247 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1248 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1249 |
+
|
1250 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
1251 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
1252 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
1253 |
+
use_cache (:obj:`bool`, `optional`):
|
1254 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
1255 |
+
decoding (see :obj:`past_key_values`).
|
1256 |
+
|
1257 |
+
Returns:
|
1258 |
+
|
1259 |
+
Example::
|
1260 |
+
|
1261 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
1262 |
+
>>> import torch
|
1263 |
+
|
1264 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
1265 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
1266 |
+
>>> config.is_decoder = True
|
1267 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
1268 |
+
|
1269 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1270 |
+
>>> outputs = model(**inputs)
|
1271 |
+
|
1272 |
+
>>> prediction_logits = outputs.logits
|
1273 |
+
"""
|
1274 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1275 |
+
if labels is not None:
|
1276 |
+
use_cache = False
|
1277 |
+
|
1278 |
+
outputs = self.bert(
|
1279 |
+
input_ids,
|
1280 |
+
attention_mask=attention_mask,
|
1281 |
+
token_type_ids=token_type_ids,
|
1282 |
+
position_ids=position_ids,
|
1283 |
+
head_mask=head_mask,
|
1284 |
+
inputs_embeds=inputs_embeds,
|
1285 |
+
encoder_hidden_states=encoder_hidden_states,
|
1286 |
+
encoder_attention_mask=encoder_attention_mask,
|
1287 |
+
past_key_values=past_key_values,
|
1288 |
+
use_cache=use_cache,
|
1289 |
+
output_attentions=output_attentions,
|
1290 |
+
output_hidden_states=output_hidden_states,
|
1291 |
+
return_dict=return_dict,
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
sequence_output = outputs[0]
|
1295 |
+
prediction_scores = self.cls(sequence_output)
|
1296 |
+
|
1297 |
+
lm_loss = None
|
1298 |
+
if labels is not None:
|
1299 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1300 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1301 |
+
labels = labels[:, 1:].contiguous()
|
1302 |
+
loss_fct = CrossEntropyLoss()
|
1303 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1304 |
+
|
1305 |
+
if not return_dict:
|
1306 |
+
output = (prediction_scores,) + outputs[2:]
|
1307 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1308 |
+
|
1309 |
+
return CausalLMOutputWithCrossAttentions(
|
1310 |
+
loss=lm_loss,
|
1311 |
+
logits=prediction_scores,
|
1312 |
+
past_key_values=outputs.past_key_values,
|
1313 |
+
hidden_states=outputs.hidden_states,
|
1314 |
+
attentions=outputs.attentions,
|
1315 |
+
cross_attentions=outputs.cross_attentions,
|
1316 |
+
)
|
1317 |
+
|
1318 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
1319 |
+
input_shape = input_ids.shape
|
1320 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1321 |
+
if attention_mask is None:
|
1322 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1323 |
+
|
1324 |
+
# cut decoder_input_ids if past is used
|
1325 |
+
if past is not None:
|
1326 |
+
input_ids = input_ids[:, -1:]
|
1327 |
+
|
1328 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past}
|
1329 |
+
|
1330 |
+
def _reorder_cache(self, past, beam_idx):
|
1331 |
+
reordered_past = ()
|
1332 |
+
for layer_past in past:
|
1333 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1334 |
+
return reordered_past
|
1335 |
+
|
1336 |
+
|
1337 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING)
|
1338 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
1339 |
+
|
1340 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1341 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1342 |
+
|
1343 |
+
def __init__(self, config):
|
1344 |
+
super().__init__(config)
|
1345 |
+
|
1346 |
+
if config.is_decoder:
|
1347 |
+
logger.warning(
|
1348 |
+
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
|
1349 |
+
"bi-directional self-attention."
|
1350 |
+
)
|
1351 |
+
|
1352 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1353 |
+
self.cls = BertOnlyMLMHead(config)
|
1354 |
+
|
1355 |
+
self.init_weights()
|
1356 |
+
|
1357 |
+
def get_output_embeddings(self):
|
1358 |
+
return self.cls.predictions.decoder
|
1359 |
+
|
1360 |
+
def set_output_embeddings(self, new_embeddings):
|
1361 |
+
self.cls.predictions.decoder = new_embeddings
|
1362 |
+
|
1363 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1364 |
+
@add_code_sample_docstrings(
|
1365 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1366 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1367 |
+
output_type=MaskedLMOutput,
|
1368 |
+
config_class=_CONFIG_FOR_DOC,
|
1369 |
+
)
|
1370 |
+
def forward(
|
1371 |
+
self,
|
1372 |
+
input_ids=None,
|
1373 |
+
attention_mask=None,
|
1374 |
+
token_type_ids=None,
|
1375 |
+
position_ids=None,
|
1376 |
+
head_mask=None,
|
1377 |
+
inputs_embeds=None,
|
1378 |
+
encoder_hidden_states=None,
|
1379 |
+
encoder_attention_mask=None,
|
1380 |
+
labels=None,
|
1381 |
+
output_attentions=None,
|
1382 |
+
output_hidden_states=None,
|
1383 |
+
return_dict=None,
|
1384 |
+
):
|
1385 |
+
r"""
|
1386 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1387 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1388 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1389 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1390 |
+
"""
|
1391 |
+
|
1392 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1393 |
+
|
1394 |
+
outputs = self.bert(
|
1395 |
+
input_ids,
|
1396 |
+
attention_mask=attention_mask,
|
1397 |
+
token_type_ids=token_type_ids,
|
1398 |
+
position_ids=position_ids,
|
1399 |
+
head_mask=head_mask,
|
1400 |
+
inputs_embeds=inputs_embeds,
|
1401 |
+
encoder_hidden_states=encoder_hidden_states,
|
1402 |
+
encoder_attention_mask=encoder_attention_mask,
|
1403 |
+
output_attentions=output_attentions,
|
1404 |
+
output_hidden_states=output_hidden_states,
|
1405 |
+
return_dict=return_dict,
|
1406 |
+
)
|
1407 |
+
|
1408 |
+
sequence_output = outputs[0]
|
1409 |
+
prediction_scores = self.cls(sequence_output)
|
1410 |
+
|
1411 |
+
masked_lm_loss = None
|
1412 |
+
if labels is not None:
|
1413 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1414 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1415 |
+
|
1416 |
+
if not return_dict:
|
1417 |
+
output = (prediction_scores,) + outputs[2:]
|
1418 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1419 |
+
|
1420 |
+
return MaskedLMOutput(
|
1421 |
+
loss=masked_lm_loss,
|
1422 |
+
logits=prediction_scores,
|
1423 |
+
hidden_states=outputs.hidden_states,
|
1424 |
+
attentions=outputs.attentions,
|
1425 |
+
)
|
1426 |
+
|
1427 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
1428 |
+
input_shape = input_ids.shape
|
1429 |
+
effective_batch_size = input_shape[0]
|
1430 |
+
|
1431 |
+
# add a dummy token
|
1432 |
+
assert self.config.pad_token_id is not None, "The PAD token should be defined for generation"
|
1433 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
1434 |
+
dummy_token = torch.full(
|
1435 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
1436 |
+
)
|
1437 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1438 |
+
|
1439 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1440 |
+
|
1441 |
+
|
1442 |
+
@add_start_docstrings(
|
1443 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top. """,
|
1444 |
+
BERT_START_DOCSTRING,
|
1445 |
+
)
|
1446 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
1447 |
+
def __init__(self, config):
|
1448 |
+
super().__init__(config)
|
1449 |
+
|
1450 |
+
self.bert = BertModel(config)
|
1451 |
+
self.cls = BertOnlyNSPHead(config)
|
1452 |
+
|
1453 |
+
self.init_weights()
|
1454 |
+
|
1455 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1456 |
+
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
1457 |
+
def forward(
|
1458 |
+
self,
|
1459 |
+
input_ids=None,
|
1460 |
+
attention_mask=None,
|
1461 |
+
token_type_ids=None,
|
1462 |
+
position_ids=None,
|
1463 |
+
head_mask=None,
|
1464 |
+
inputs_embeds=None,
|
1465 |
+
labels=None,
|
1466 |
+
output_attentions=None,
|
1467 |
+
output_hidden_states=None,
|
1468 |
+
return_dict=None,
|
1469 |
+
**kwargs,
|
1470 |
+
):
|
1471 |
+
r"""
|
1472 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1473 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1474 |
+
(see ``input_ids`` docstring). Indices should be in ``[0, 1]``:
|
1475 |
+
|
1476 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1477 |
+
- 1 indicates sequence B is a random sequence.
|
1478 |
+
|
1479 |
+
Returns:
|
1480 |
+
|
1481 |
+
Example::
|
1482 |
+
|
1483 |
+
>>> from transformers import BertTokenizer, BertForNextSentencePrediction
|
1484 |
+
>>> import torch
|
1485 |
+
|
1486 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
1487 |
+
>>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
|
1488 |
+
|
1489 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1490 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1491 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt')
|
1492 |
+
|
1493 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
|
1494 |
+
>>> logits = outputs.logits
|
1495 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1496 |
+
"""
|
1497 |
+
|
1498 |
+
if "next_sentence_label" in kwargs:
|
1499 |
+
warnings.warn(
|
1500 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.",
|
1501 |
+
FutureWarning,
|
1502 |
+
)
|
1503 |
+
labels = kwargs.pop("next_sentence_label")
|
1504 |
+
|
1505 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1506 |
+
|
1507 |
+
outputs = self.bert(
|
1508 |
+
input_ids,
|
1509 |
+
attention_mask=attention_mask,
|
1510 |
+
token_type_ids=token_type_ids,
|
1511 |
+
position_ids=position_ids,
|
1512 |
+
head_mask=head_mask,
|
1513 |
+
inputs_embeds=inputs_embeds,
|
1514 |
+
output_attentions=output_attentions,
|
1515 |
+
output_hidden_states=output_hidden_states,
|
1516 |
+
return_dict=return_dict,
|
1517 |
+
)
|
1518 |
+
|
1519 |
+
pooled_output = outputs[1]
|
1520 |
+
|
1521 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1522 |
+
|
1523 |
+
next_sentence_loss = None
|
1524 |
+
if labels is not None:
|
1525 |
+
loss_fct = CrossEntropyLoss()
|
1526 |
+
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
|
1527 |
+
|
1528 |
+
if not return_dict:
|
1529 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1530 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1531 |
+
|
1532 |
+
return NextSentencePredictorOutput(
|
1533 |
+
loss=next_sentence_loss,
|
1534 |
+
logits=seq_relationship_scores,
|
1535 |
+
hidden_states=outputs.hidden_states,
|
1536 |
+
attentions=outputs.attentions,
|
1537 |
+
)
|
1538 |
+
|
1539 |
+
|
1540 |
+
@add_start_docstrings(
|
1541 |
+
"""
|
1542 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1543 |
+
output) e.g. for GLUE tasks.
|
1544 |
+
""",
|
1545 |
+
BERT_START_DOCSTRING,
|
1546 |
+
)
|
1547 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
1548 |
+
def __init__(self, config):
|
1549 |
+
super().__init__(config)
|
1550 |
+
self.num_labels = config.num_labels
|
1551 |
+
self.config = config
|
1552 |
+
|
1553 |
+
self.bert = BertModel(config)
|
1554 |
+
classifier_dropout = (
|
1555 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1556 |
+
)
|
1557 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1558 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1559 |
+
|
1560 |
+
self.skim_coefficient = config.skim_coefficient if hasattr(config, 'skim_coefficient') else 1
|
1561 |
+
|
1562 |
+
self.init_weights()
|
1563 |
+
|
1564 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1565 |
+
@add_code_sample_docstrings(
|
1566 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1567 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1568 |
+
output_type=SequenceClassifierOutput,
|
1569 |
+
config_class=_CONFIG_FOR_DOC,
|
1570 |
+
)
|
1571 |
+
def forward(
|
1572 |
+
self,
|
1573 |
+
input_ids=None,
|
1574 |
+
attention_mask=None,
|
1575 |
+
token_type_ids=None,
|
1576 |
+
position_ids=None,
|
1577 |
+
head_mask=None,
|
1578 |
+
inputs_embeds=None,
|
1579 |
+
labels=None,
|
1580 |
+
output_attentions=None,
|
1581 |
+
output_hidden_states=None,
|
1582 |
+
return_dict=None,
|
1583 |
+
):
|
1584 |
+
r"""
|
1585 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1586 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
1587 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1588 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1589 |
+
"""
|
1590 |
+
# assert gumbel_softmax is not None
|
1591 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1592 |
+
|
1593 |
+
outputs = self.bert(
|
1594 |
+
input_ids,
|
1595 |
+
attention_mask=attention_mask,
|
1596 |
+
token_type_ids=token_type_ids,
|
1597 |
+
position_ids=position_ids,
|
1598 |
+
head_mask=head_mask,
|
1599 |
+
inputs_embeds=inputs_embeds,
|
1600 |
+
output_attentions=output_attentions,
|
1601 |
+
output_hidden_states=output_hidden_states,
|
1602 |
+
return_dict=return_dict,
|
1603 |
+
)
|
1604 |
+
|
1605 |
+
pooled_output = outputs[1]
|
1606 |
+
|
1607 |
+
pooled_output = self.dropout(pooled_output)
|
1608 |
+
logits = self.classifier(pooled_output)
|
1609 |
+
|
1610 |
+
loss = None
|
1611 |
+
if labels is not None:
|
1612 |
+
if self.config.problem_type is None:
|
1613 |
+
if self.num_labels == 1:
|
1614 |
+
self.config.problem_type = "regression"
|
1615 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1616 |
+
self.config.problem_type = "single_label_classification"
|
1617 |
+
else:
|
1618 |
+
self.config.problem_type = "multi_label_classification"
|
1619 |
+
|
1620 |
+
if self.config.problem_type == "regression":
|
1621 |
+
loss_fct = MSELoss()
|
1622 |
+
if self.num_labels == 1:
|
1623 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1624 |
+
else:
|
1625 |
+
loss = loss_fct(logits, labels)
|
1626 |
+
elif self.config.problem_type == "single_label_classification":
|
1627 |
+
loss_fct = CrossEntropyLoss()
|
1628 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1629 |
+
elif self.config.problem_type == "multi_label_classification":
|
1630 |
+
loss_fct = BCEWithLogitsLoss()
|
1631 |
+
loss = loss_fct(logits, labels)
|
1632 |
+
if not return_dict:
|
1633 |
+
output = (logits,) + outputs[2:]
|
1634 |
+
return ((loss,) + output) if loss is not None else output
|
1635 |
+
|
1636 |
+
skim_loss, neat_mac = 0.0, 0.0
|
1637 |
+
layer_neat_mac = list()
|
1638 |
+
all_tokens_length = torch.mean(torch.sum(attention_mask.to(torch.float32),dim=-1))
|
1639 |
+
for mask in outputs.skim_mask:
|
1640 |
+
accumulated_skim_mask = torch.mean(torch.sum(mask,dim=1))
|
1641 |
+
skim_loss += accumulated_skim_mask/mask.shape[1]
|
1642 |
+
layer_neat_mac.append(accumulated_skim_mask/all_tokens_length)
|
1643 |
+
neat_mac += accumulated_skim_mask/all_tokens_length
|
1644 |
+
skim_loss /= self.config.num_hidden_layers
|
1645 |
+
neat_mac /= self.config.num_hidden_layers
|
1646 |
+
classification_loss = loss
|
1647 |
+
# print(skim_loss, neat_mac, loss)
|
1648 |
+
# loss = skim_loss
|
1649 |
+
if labels is not None:
|
1650 |
+
loss = self.skim_coefficient * skim_loss + loss
|
1651 |
+
|
1652 |
+
return SequenceClassifierOutputSkim(
|
1653 |
+
loss=loss,
|
1654 |
+
logits=logits,
|
1655 |
+
hidden_states=outputs.hidden_states,
|
1656 |
+
attentions=outputs.attentions,
|
1657 |
+
attention_mask=outputs.attention_mask,
|
1658 |
+
skim_mask=outputs.skim_mask,
|
1659 |
+
skim_loss=skim_loss,
|
1660 |
+
classification_loss=classification_loss,
|
1661 |
+
tokens_remained=neat_mac,
|
1662 |
+
layer_tokens_remained=layer_neat_mac,
|
1663 |
+
)
|
1664 |
+
|
1665 |
+
|
1666 |
+
@add_start_docstrings(
|
1667 |
+
"""
|
1668 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1669 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1670 |
+
""",
|
1671 |
+
BERT_START_DOCSTRING,
|
1672 |
+
)
|
1673 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
1674 |
+
def __init__(self, config):
|
1675 |
+
super().__init__(config)
|
1676 |
+
|
1677 |
+
self.bert = BertModel(config)
|
1678 |
+
classifier_dropout = (
|
1679 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1680 |
+
)
|
1681 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1682 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1683 |
+
|
1684 |
+
self.init_weights()
|
1685 |
+
|
1686 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1687 |
+
@add_code_sample_docstrings(
|
1688 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1689 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1690 |
+
output_type=MultipleChoiceModelOutput,
|
1691 |
+
config_class=_CONFIG_FOR_DOC,
|
1692 |
+
)
|
1693 |
+
def forward(
|
1694 |
+
self,
|
1695 |
+
input_ids=None,
|
1696 |
+
attention_mask=None,
|
1697 |
+
token_type_ids=None,
|
1698 |
+
position_ids=None,
|
1699 |
+
head_mask=None,
|
1700 |
+
inputs_embeds=None,
|
1701 |
+
labels=None,
|
1702 |
+
output_attentions=None,
|
1703 |
+
output_hidden_states=None,
|
1704 |
+
return_dict=None,
|
1705 |
+
):
|
1706 |
+
r"""
|
1707 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1708 |
+
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
|
1709 |
+
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
|
1710 |
+
:obj:`input_ids` above)
|
1711 |
+
"""
|
1712 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1713 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1714 |
+
|
1715 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1716 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1717 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1718 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1719 |
+
inputs_embeds = (
|
1720 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1721 |
+
if inputs_embeds is not None
|
1722 |
+
else None
|
1723 |
+
)
|
1724 |
+
|
1725 |
+
outputs = self.bert(
|
1726 |
+
input_ids,
|
1727 |
+
attention_mask=attention_mask,
|
1728 |
+
token_type_ids=token_type_ids,
|
1729 |
+
position_ids=position_ids,
|
1730 |
+
head_mask=head_mask,
|
1731 |
+
inputs_embeds=inputs_embeds,
|
1732 |
+
output_attentions=output_attentions,
|
1733 |
+
output_hidden_states=output_hidden_states,
|
1734 |
+
return_dict=return_dict,
|
1735 |
+
)
|
1736 |
+
|
1737 |
+
pooled_output = outputs[1]
|
1738 |
+
|
1739 |
+
pooled_output = self.dropout(pooled_output)
|
1740 |
+
logits = self.classifier(pooled_output)
|
1741 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1742 |
+
|
1743 |
+
loss = None
|
1744 |
+
if labels is not None:
|
1745 |
+
loss_fct = CrossEntropyLoss()
|
1746 |
+
loss = loss_fct(reshaped_logits, labels)
|
1747 |
+
|
1748 |
+
if not return_dict:
|
1749 |
+
output = (reshaped_logits,) + outputs[2:]
|
1750 |
+
return ((loss,) + output) if loss is not None else output
|
1751 |
+
|
1752 |
+
return MultipleChoiceModelOutput(
|
1753 |
+
loss=loss,
|
1754 |
+
logits=reshaped_logits,
|
1755 |
+
hidden_states=outputs.hidden_states,
|
1756 |
+
attentions=outputs.attentions,
|
1757 |
+
)
|
1758 |
+
|
1759 |
+
|
1760 |
+
@add_start_docstrings(
|
1761 |
+
"""
|
1762 |
+
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1763 |
+
Named-Entity-Recognition (NER) tasks.
|
1764 |
+
""",
|
1765 |
+
BERT_START_DOCSTRING,
|
1766 |
+
)
|
1767 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
1768 |
+
|
1769 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1770 |
+
|
1771 |
+
def __init__(self, config):
|
1772 |
+
super().__init__(config)
|
1773 |
+
self.num_labels = config.num_labels
|
1774 |
+
|
1775 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1776 |
+
classifier_dropout = (
|
1777 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1778 |
+
)
|
1779 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1780 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1781 |
+
|
1782 |
+
self.init_weights()
|
1783 |
+
|
1784 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1785 |
+
@add_code_sample_docstrings(
|
1786 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1787 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1788 |
+
output_type=TokenClassifierOutput,
|
1789 |
+
config_class=_CONFIG_FOR_DOC,
|
1790 |
+
)
|
1791 |
+
def forward(
|
1792 |
+
self,
|
1793 |
+
input_ids=None,
|
1794 |
+
attention_mask=None,
|
1795 |
+
token_type_ids=None,
|
1796 |
+
position_ids=None,
|
1797 |
+
head_mask=None,
|
1798 |
+
inputs_embeds=None,
|
1799 |
+
labels=None,
|
1800 |
+
output_attentions=None,
|
1801 |
+
output_hidden_states=None,
|
1802 |
+
return_dict=None,
|
1803 |
+
):
|
1804 |
+
r"""
|
1805 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1806 |
+
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
|
1807 |
+
1]``.
|
1808 |
+
"""
|
1809 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1810 |
+
|
1811 |
+
outputs = self.bert(
|
1812 |
+
input_ids,
|
1813 |
+
attention_mask=attention_mask,
|
1814 |
+
token_type_ids=token_type_ids,
|
1815 |
+
position_ids=position_ids,
|
1816 |
+
head_mask=head_mask,
|
1817 |
+
inputs_embeds=inputs_embeds,
|
1818 |
+
output_attentions=output_attentions,
|
1819 |
+
output_hidden_states=output_hidden_states,
|
1820 |
+
return_dict=return_dict,
|
1821 |
+
)
|
1822 |
+
|
1823 |
+
sequence_output = outputs[0]
|
1824 |
+
|
1825 |
+
sequence_output = self.dropout(sequence_output)
|
1826 |
+
logits = self.classifier(sequence_output)
|
1827 |
+
|
1828 |
+
loss = None
|
1829 |
+
if labels is not None:
|
1830 |
+
loss_fct = CrossEntropyLoss()
|
1831 |
+
# Only keep active parts of the loss
|
1832 |
+
if attention_mask is not None:
|
1833 |
+
active_loss = attention_mask.view(-1) == 1
|
1834 |
+
active_logits = logits.view(-1, self.num_labels)
|
1835 |
+
active_labels = torch.where(
|
1836 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
1837 |
+
)
|
1838 |
+
loss = loss_fct(active_logits, active_labels)
|
1839 |
+
else:
|
1840 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1841 |
+
|
1842 |
+
if not return_dict:
|
1843 |
+
output = (logits,) + outputs[2:]
|
1844 |
+
return ((loss,) + output) if loss is not None else output
|
1845 |
+
|
1846 |
+
return TokenClassifierOutput(
|
1847 |
+
loss=loss,
|
1848 |
+
logits=logits,
|
1849 |
+
hidden_states=outputs.hidden_states,
|
1850 |
+
attentions=outputs.attentions,
|
1851 |
+
)
|
1852 |
+
|
1853 |
+
|
1854 |
+
@add_start_docstrings(
|
1855 |
+
"""
|
1856 |
+
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1857 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1858 |
+
""",
|
1859 |
+
BERT_START_DOCSTRING,
|
1860 |
+
)
|
1861 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
1862 |
+
|
1863 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1864 |
+
|
1865 |
+
def __init__(self, config):
|
1866 |
+
super().__init__(config)
|
1867 |
+
self.num_labels = config.num_labels
|
1868 |
+
|
1869 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1870 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1871 |
+
|
1872 |
+
self.skim_coefficient = config.skim_coefficient if hasattr(config, 'skim_coefficient') else 1
|
1873 |
+
|
1874 |
+
self.init_weights()
|
1875 |
+
|
1876 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1877 |
+
@add_code_sample_docstrings(
|
1878 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1879 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1880 |
+
output_type=QuestionAnsweringModelOutput,
|
1881 |
+
config_class=_CONFIG_FOR_DOC,
|
1882 |
+
)
|
1883 |
+
def forward(
|
1884 |
+
self,
|
1885 |
+
input_ids=None,
|
1886 |
+
attention_mask=None,
|
1887 |
+
token_type_ids=None,
|
1888 |
+
position_ids=None,
|
1889 |
+
head_mask=None,
|
1890 |
+
inputs_embeds=None,
|
1891 |
+
start_positions=None,
|
1892 |
+
end_positions=None,
|
1893 |
+
output_attentions=None,
|
1894 |
+
output_hidden_states=None,
|
1895 |
+
return_dict=None,
|
1896 |
+
):
|
1897 |
+
r"""
|
1898 |
+
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1899 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1900 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
1901 |
+
sequence are not taken into account for computing the loss.
|
1902 |
+
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1903 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1904 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
1905 |
+
sequence are not taken into account for computing the loss.
|
1906 |
+
"""
|
1907 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1908 |
+
|
1909 |
+
outputs = self.bert(
|
1910 |
+
input_ids,
|
1911 |
+
attention_mask=attention_mask,
|
1912 |
+
token_type_ids=token_type_ids,
|
1913 |
+
position_ids=position_ids,
|
1914 |
+
head_mask=head_mask,
|
1915 |
+
inputs_embeds=inputs_embeds,
|
1916 |
+
output_attentions=output_attentions,
|
1917 |
+
output_hidden_states=output_hidden_states,
|
1918 |
+
return_dict=return_dict,
|
1919 |
+
)
|
1920 |
+
|
1921 |
+
sequence_output = outputs[0]
|
1922 |
+
|
1923 |
+
logits = self.qa_outputs(sequence_output)
|
1924 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1925 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1926 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1927 |
+
|
1928 |
+
total_loss = None
|
1929 |
+
if start_positions is not None and end_positions is not None:
|
1930 |
+
# If we are on multi-GPU, split add a dimension
|
1931 |
+
if len(start_positions.size()) > 1:
|
1932 |
+
start_positions = start_positions.squeeze(-1)
|
1933 |
+
if len(end_positions.size()) > 1:
|
1934 |
+
end_positions = end_positions.squeeze(-1)
|
1935 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1936 |
+
ignored_index = start_logits.size(1)
|
1937 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1938 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1939 |
+
|
1940 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1941 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1942 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1943 |
+
total_loss = (start_loss + end_loss) / 2
|
1944 |
+
|
1945 |
+
skim_loss, neat_mac = 0.0, 0.0
|
1946 |
+
layer_neat_mac = list()
|
1947 |
+
all_tokens_length = torch.mean(torch.sum(attention_mask.to(torch.float32),dim=-1))
|
1948 |
+
for mask in outputs.skim_mask:
|
1949 |
+
accumulated_skim_mask = torch.mean(torch.sum(mask,dim=1))
|
1950 |
+
skim_loss += accumulated_skim_mask/mask.shape[1]
|
1951 |
+
layer_neat_mac.append(accumulated_skim_mask/all_tokens_length)
|
1952 |
+
neat_mac += accumulated_skim_mask/all_tokens_length
|
1953 |
+
skim_loss /= self.config.num_hidden_layers
|
1954 |
+
neat_mac /= self.config.num_hidden_layers
|
1955 |
+
qa_loss = total_loss
|
1956 |
+
if start_positions is not None and end_positions is not None:
|
1957 |
+
# print(skim_loss, neat_mac, loss)
|
1958 |
+
# loss = skim_loss
|
1959 |
+
total_loss = self.skim_coefficient * skim_loss + qa_loss
|
1960 |
+
|
1961 |
+
if not return_dict:
|
1962 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1963 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1964 |
+
|
1965 |
+
|
1966 |
+
return QuestionAnsweringModelOutputSkim(
|
1967 |
+
loss=total_loss,
|
1968 |
+
start_logits=start_logits,
|
1969 |
+
end_logits=end_logits,
|
1970 |
+
hidden_states=outputs.hidden_states,
|
1971 |
+
attentions=outputs.attentions,
|
1972 |
+
attention_mask=outputs.attention_mask,
|
1973 |
+
skim_mask=outputs.skim_mask,
|
1974 |
+
skim_loss=skim_loss,
|
1975 |
+
classification_loss=qa_loss,
|
1976 |
+
tokens_remained=neat_mac,
|
1977 |
+
layer_tokens_remained=layer_neat_mac,
|
1978 |
+
)
|
1979 |
+
|
1980 |
+
|
1981 |
+
def test_BertEncoder():
|
1982 |
+
import transformers
|
1983 |
+
|
1984 |
+
logging.debug(f'Start unit test for BertEncoder')
|
1985 |
+
|
1986 |
+
config = transformers.BertConfig.from_pretrained('bert-base-uncased')
|
1987 |
+
# config.output_attentions = False
|
1988 |
+
encoder = BertEncoder(config)
|
1989 |
+
|
1990 |
+
rand_hidden_states = torch.rand((1,8,768))
|
1991 |
+
# rand_hidden_states = torch.rand((4,128,768))
|
1992 |
+
|
1993 |
+
encoder_outputs = encoder(rand_hidden_states)
|
1994 |
+
|
1995 |
+
logging.debug(f'output attention: {config.output_attentions}, {encoder_outputs[-1][0].shape}')
|
1996 |
+
|
1997 |
+
if __name__ == "__main__":
|
1998 |
+
import logging
|
1999 |
+
|
2000 |
+
logging.basicConfig(level=logging.DEBUG)
|
2001 |
+
|
2002 |
+
test_BertEncoder()
|
test_module/modeling_transkimer_roberta.py
ADDED
@@ -0,0 +1,1624 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch RoBERTa model. """
|
17 |
+
|
18 |
+
import math
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from packaging import version
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN, gelu
|
27 |
+
from transformers.file_utils import (
|
28 |
+
add_code_sample_docstrings,
|
29 |
+
add_start_docstrings,
|
30 |
+
add_start_docstrings_to_model_forward,
|
31 |
+
replace_return_docstrings,
|
32 |
+
)
|
33 |
+
from transformers.modeling_outputs import (
|
34 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
35 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
36 |
+
CausalLMOutputWithCrossAttentions,
|
37 |
+
MaskedLMOutput,
|
38 |
+
MultipleChoiceModelOutput,
|
39 |
+
QuestionAnsweringModelOutput,
|
40 |
+
SequenceClassifierOutput,
|
41 |
+
TokenClassifierOutput,
|
42 |
+
)
|
43 |
+
from transformers.modeling_utils import (
|
44 |
+
PreTrainedModel,
|
45 |
+
apply_chunking_to_forward,
|
46 |
+
find_pruneable_heads_and_indices,
|
47 |
+
prune_linear_layer,
|
48 |
+
)
|
49 |
+
from transformers.utils import logging
|
50 |
+
from transformers.models.roberta.configuration_roberta import RobertaConfig
|
51 |
+
|
52 |
+
from module.modeling_skim_predictor import SkimPredictor
|
53 |
+
from module.modeling_utils import BaseModelOutputWithPastAndCrossAttentionsSkim, BaseModelOutputWithPoolingAndCrossAttentionsSkim, SequenceClassifierOutputSkim
|
54 |
+
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__)
|
57 |
+
|
58 |
+
_CHECKPOINT_FOR_DOC = "roberta-base"
|
59 |
+
_CONFIG_FOR_DOC = "RobertaConfig"
|
60 |
+
_TOKENIZER_FOR_DOC = "RobertaTokenizer"
|
61 |
+
|
62 |
+
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
63 |
+
"roberta-base",
|
64 |
+
"roberta-large",
|
65 |
+
"roberta-large-mnli",
|
66 |
+
"distilroberta-base",
|
67 |
+
"roberta-base-openai-detector",
|
68 |
+
"roberta-large-openai-detector",
|
69 |
+
# See all RoBERTa models at https://huggingface.co/models?filter=roberta
|
70 |
+
]
|
71 |
+
|
72 |
+
|
73 |
+
class RobertaEmbeddings(nn.Module):
|
74 |
+
"""
|
75 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
76 |
+
"""
|
77 |
+
|
78 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
|
79 |
+
def __init__(self, config):
|
80 |
+
super().__init__()
|
81 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
82 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
83 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
84 |
+
|
85 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
86 |
+
# any TensorFlow checkpoint file
|
87 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
88 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
89 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
90 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
91 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
92 |
+
if version.parse(torch.__version__) > version.parse("1.6.0"):
|
93 |
+
self.register_buffer(
|
94 |
+
"token_type_ids",
|
95 |
+
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
|
96 |
+
persistent=False,
|
97 |
+
)
|
98 |
+
|
99 |
+
# End copy
|
100 |
+
self.padding_idx = config.pad_token_id
|
101 |
+
self.position_embeddings = nn.Embedding(
|
102 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
103 |
+
)
|
104 |
+
|
105 |
+
def forward(
|
106 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
107 |
+
):
|
108 |
+
if position_ids is None:
|
109 |
+
if input_ids is not None:
|
110 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
111 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
112 |
+
else:
|
113 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
114 |
+
|
115 |
+
if input_ids is not None:
|
116 |
+
input_shape = input_ids.size()
|
117 |
+
else:
|
118 |
+
input_shape = inputs_embeds.size()[:-1]
|
119 |
+
|
120 |
+
seq_length = input_shape[1]
|
121 |
+
|
122 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
123 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
124 |
+
# issue #5664
|
125 |
+
if token_type_ids is None:
|
126 |
+
if hasattr(self, "token_type_ids"):
|
127 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
128 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
129 |
+
token_type_ids = buffered_token_type_ids_expanded
|
130 |
+
else:
|
131 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
132 |
+
|
133 |
+
if inputs_embeds is None:
|
134 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
135 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
136 |
+
|
137 |
+
embeddings = inputs_embeds + token_type_embeddings
|
138 |
+
if self.position_embedding_type == "absolute":
|
139 |
+
position_embeddings = self.position_embeddings(position_ids)
|
140 |
+
embeddings += position_embeddings
|
141 |
+
embeddings = self.LayerNorm(embeddings)
|
142 |
+
embeddings = self.dropout(embeddings)
|
143 |
+
return embeddings
|
144 |
+
|
145 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
146 |
+
"""
|
147 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
inputs_embeds: torch.Tensor
|
151 |
+
|
152 |
+
Returns: torch.Tensor
|
153 |
+
"""
|
154 |
+
input_shape = inputs_embeds.size()[:-1]
|
155 |
+
sequence_length = input_shape[1]
|
156 |
+
|
157 |
+
position_ids = torch.arange(
|
158 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
159 |
+
)
|
160 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
161 |
+
|
162 |
+
|
163 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta
|
164 |
+
class RobertaSelfAttention(nn.Module):
|
165 |
+
def __init__(self, config):
|
166 |
+
super().__init__()
|
167 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
168 |
+
raise ValueError(
|
169 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
170 |
+
f"heads ({config.num_attention_heads})"
|
171 |
+
)
|
172 |
+
|
173 |
+
self.num_attention_heads = config.num_attention_heads
|
174 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
175 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
176 |
+
|
177 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
178 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
179 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
180 |
+
|
181 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
182 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
183 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
184 |
+
self.max_position_embeddings = config.max_position_embeddings
|
185 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
186 |
+
|
187 |
+
self.is_decoder = config.is_decoder
|
188 |
+
|
189 |
+
def transpose_for_scores(self, x):
|
190 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
191 |
+
x = x.view(*new_x_shape)
|
192 |
+
return x.permute(0, 2, 1, 3)
|
193 |
+
|
194 |
+
def forward(
|
195 |
+
self,
|
196 |
+
hidden_states,
|
197 |
+
attention_mask=None,
|
198 |
+
head_mask=None,
|
199 |
+
encoder_hidden_states=None,
|
200 |
+
encoder_attention_mask=None,
|
201 |
+
past_key_value=None,
|
202 |
+
output_attentions=False,
|
203 |
+
skim_mask=None,
|
204 |
+
):
|
205 |
+
mixed_query_layer = self.query(hidden_states)
|
206 |
+
|
207 |
+
# If this is instantiated as a cross-attention module, the keys
|
208 |
+
# and values come from an encoder; the attention mask needs to be
|
209 |
+
# such that the encoder's padding tokens are not attended to.
|
210 |
+
is_cross_attention = encoder_hidden_states is not None
|
211 |
+
|
212 |
+
if is_cross_attention and past_key_value is not None:
|
213 |
+
# reuse k,v, cross_attentions
|
214 |
+
key_layer = past_key_value[0]
|
215 |
+
value_layer = past_key_value[1]
|
216 |
+
attention_mask = encoder_attention_mask
|
217 |
+
elif is_cross_attention:
|
218 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
219 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
220 |
+
attention_mask = encoder_attention_mask
|
221 |
+
elif past_key_value is not None:
|
222 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
223 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
224 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
225 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
226 |
+
else:
|
227 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
228 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
229 |
+
|
230 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
231 |
+
|
232 |
+
if self.is_decoder:
|
233 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
234 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
235 |
+
# key/value_states (first "if" case)
|
236 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
237 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
238 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
239 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
240 |
+
past_key_value = (key_layer, value_layer)
|
241 |
+
|
242 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
243 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
244 |
+
|
245 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
246 |
+
seq_length = hidden_states.size()[1]
|
247 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
248 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
249 |
+
distance = position_ids_l - position_ids_r
|
250 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
251 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
252 |
+
|
253 |
+
if self.position_embedding_type == "relative_key":
|
254 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
255 |
+
attention_scores = attention_scores + relative_position_scores
|
256 |
+
elif self.position_embedding_type == "relative_key_query":
|
257 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
258 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
259 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
260 |
+
|
261 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
262 |
+
if attention_mask is not None:
|
263 |
+
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
|
264 |
+
attention_scores = attention_scores + attention_mask
|
265 |
+
|
266 |
+
# Normalize the attention scores to probabilities.
|
267 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
268 |
+
|
269 |
+
# mask attention probs during training for skimming
|
270 |
+
attention_probs = attention_probs * skim_mask[:, None, None, :]
|
271 |
+
|
272 |
+
# This is actually dropping out entire tokens to attend to, which might
|
273 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
274 |
+
attention_probs = self.dropout(attention_probs)
|
275 |
+
|
276 |
+
# Mask heads if we want to
|
277 |
+
if head_mask is not None:
|
278 |
+
attention_probs = attention_probs * head_mask
|
279 |
+
|
280 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
281 |
+
|
282 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
283 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
284 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
285 |
+
|
286 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
287 |
+
|
288 |
+
if self.is_decoder:
|
289 |
+
outputs = outputs + (past_key_value,)
|
290 |
+
return outputs
|
291 |
+
|
292 |
+
|
293 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
294 |
+
class RobertaSelfOutput(nn.Module):
|
295 |
+
def __init__(self, config):
|
296 |
+
super().__init__()
|
297 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
298 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
299 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
300 |
+
|
301 |
+
def forward(self, hidden_states, input_tensor):
|
302 |
+
hidden_states = self.dense(hidden_states)
|
303 |
+
hidden_states = self.dropout(hidden_states)
|
304 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
305 |
+
return hidden_states
|
306 |
+
|
307 |
+
|
308 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
|
309 |
+
class RobertaAttention(nn.Module):
|
310 |
+
def __init__(self, config):
|
311 |
+
super().__init__()
|
312 |
+
self.self = RobertaSelfAttention(config)
|
313 |
+
self.output = RobertaSelfOutput(config)
|
314 |
+
self.pruned_heads = set()
|
315 |
+
|
316 |
+
def prune_heads(self, heads):
|
317 |
+
if len(heads) == 0:
|
318 |
+
return
|
319 |
+
heads, index = find_pruneable_heads_and_indices(
|
320 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
321 |
+
)
|
322 |
+
|
323 |
+
# Prune linear layers
|
324 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
325 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
326 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
327 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
328 |
+
|
329 |
+
# Update hyper params and store pruned heads
|
330 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
331 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
332 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
333 |
+
|
334 |
+
def forward(
|
335 |
+
self,
|
336 |
+
hidden_states,
|
337 |
+
attention_mask=None,
|
338 |
+
head_mask=None,
|
339 |
+
encoder_hidden_states=None,
|
340 |
+
encoder_attention_mask=None,
|
341 |
+
past_key_value=None,
|
342 |
+
output_attentions=False,
|
343 |
+
skim_mask=None,
|
344 |
+
):
|
345 |
+
self_outputs = self.self(
|
346 |
+
hidden_states,
|
347 |
+
attention_mask,
|
348 |
+
head_mask,
|
349 |
+
encoder_hidden_states,
|
350 |
+
encoder_attention_mask,
|
351 |
+
past_key_value,
|
352 |
+
output_attentions,
|
353 |
+
skim_mask,
|
354 |
+
)
|
355 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
356 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
357 |
+
return outputs
|
358 |
+
|
359 |
+
|
360 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
361 |
+
class RobertaIntermediate(nn.Module):
|
362 |
+
def __init__(self, config):
|
363 |
+
super().__init__()
|
364 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
365 |
+
if isinstance(config.hidden_act, str):
|
366 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
367 |
+
else:
|
368 |
+
self.intermediate_act_fn = config.hidden_act
|
369 |
+
|
370 |
+
def forward(self, hidden_states):
|
371 |
+
hidden_states = self.dense(hidden_states)
|
372 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
373 |
+
return hidden_states
|
374 |
+
|
375 |
+
|
376 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
377 |
+
class RobertaOutput(nn.Module):
|
378 |
+
def __init__(self, config):
|
379 |
+
super().__init__()
|
380 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
381 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
382 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
383 |
+
|
384 |
+
def forward(self, hidden_states, input_tensor):
|
385 |
+
hidden_states = self.dense(hidden_states)
|
386 |
+
hidden_states = self.dropout(hidden_states)
|
387 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
388 |
+
return hidden_states
|
389 |
+
|
390 |
+
|
391 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta
|
392 |
+
class RobertaLayer(nn.Module):
|
393 |
+
def __init__(self, config):
|
394 |
+
super().__init__()
|
395 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
396 |
+
self.seq_len_dim = 1
|
397 |
+
self.attention = RobertaAttention(config)
|
398 |
+
self.is_decoder = config.is_decoder
|
399 |
+
self.add_cross_attention = config.add_cross_attention
|
400 |
+
if self.add_cross_attention:
|
401 |
+
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
|
402 |
+
self.crossattention = RobertaAttention(config)
|
403 |
+
self.intermediate = RobertaIntermediate(config)
|
404 |
+
self.output = RobertaOutput(config)
|
405 |
+
|
406 |
+
def forward(
|
407 |
+
self,
|
408 |
+
hidden_states,
|
409 |
+
attention_mask=None,
|
410 |
+
head_mask=None,
|
411 |
+
encoder_hidden_states=None,
|
412 |
+
encoder_attention_mask=None,
|
413 |
+
past_key_value=None,
|
414 |
+
output_attentions=False,
|
415 |
+
skim_mask=None,
|
416 |
+
):
|
417 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
418 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
419 |
+
self_attention_outputs = self.attention(
|
420 |
+
hidden_states,
|
421 |
+
attention_mask,
|
422 |
+
head_mask,
|
423 |
+
output_attentions=output_attentions,
|
424 |
+
past_key_value=self_attn_past_key_value,
|
425 |
+
skim_mask=skim_mask,
|
426 |
+
)
|
427 |
+
attention_output = self_attention_outputs[0]
|
428 |
+
|
429 |
+
# if decoder, the last output is tuple of self-attn cache
|
430 |
+
if self.is_decoder:
|
431 |
+
outputs = self_attention_outputs[1:-1]
|
432 |
+
present_key_value = self_attention_outputs[-1]
|
433 |
+
else:
|
434 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
435 |
+
|
436 |
+
cross_attn_present_key_value = None
|
437 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
438 |
+
assert hasattr(
|
439 |
+
self, "crossattention"
|
440 |
+
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
441 |
+
|
442 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
443 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
444 |
+
cross_attention_outputs = self.crossattention(
|
445 |
+
attention_output,
|
446 |
+
attention_mask,
|
447 |
+
head_mask,
|
448 |
+
encoder_hidden_states,
|
449 |
+
encoder_attention_mask,
|
450 |
+
cross_attn_past_key_value,
|
451 |
+
output_attentions,
|
452 |
+
)
|
453 |
+
attention_output = cross_attention_outputs[0]
|
454 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
455 |
+
|
456 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
457 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
458 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
459 |
+
|
460 |
+
layer_output = apply_chunking_to_forward(
|
461 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
462 |
+
)
|
463 |
+
outputs = (layer_output,) + outputs
|
464 |
+
|
465 |
+
# if decoder, return the attn key/values as the last output
|
466 |
+
if self.is_decoder:
|
467 |
+
outputs = outputs + (present_key_value,)
|
468 |
+
|
469 |
+
return outputs
|
470 |
+
|
471 |
+
def feed_forward_chunk(self, attention_output):
|
472 |
+
intermediate_output = self.intermediate(attention_output)
|
473 |
+
layer_output = self.output(intermediate_output, attention_output)
|
474 |
+
return layer_output
|
475 |
+
|
476 |
+
|
477 |
+
|
478 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta
|
479 |
+
class RobertaEncoder(nn.Module):
|
480 |
+
def __init__(self, config):
|
481 |
+
super().__init__()
|
482 |
+
self.config = config
|
483 |
+
self.layer = nn.ModuleList([RobertaLayer(config) for _ in range(config.num_hidden_layers)])
|
484 |
+
|
485 |
+
# skim predictors for each layer
|
486 |
+
self.skim_predictors = nn.ModuleList([SkimPredictor(config.hidden_size, 2) for _ in range(config.num_hidden_layers)])
|
487 |
+
|
488 |
+
def forward(
|
489 |
+
self,
|
490 |
+
hidden_states,
|
491 |
+
attention_mask=None,
|
492 |
+
head_mask=None,
|
493 |
+
encoder_hidden_states=None,
|
494 |
+
encoder_attention_mask=None,
|
495 |
+
past_key_values=None,
|
496 |
+
use_cache=None,
|
497 |
+
output_attentions=False,
|
498 |
+
output_hidden_states=False,
|
499 |
+
return_dict=True,
|
500 |
+
):
|
501 |
+
all_hidden_states = () if output_hidden_states else None
|
502 |
+
all_self_attentions = () if output_attentions else None
|
503 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
504 |
+
all_skim_mask = ()
|
505 |
+
forward_hidden_states = hidden_states.clone()
|
506 |
+
|
507 |
+
next_decoder_cache = () if use_cache else None
|
508 |
+
for i, layer_module in enumerate(self.layer):
|
509 |
+
if output_hidden_states:
|
510 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
511 |
+
|
512 |
+
skim_mask = nn.functional.gumbel_softmax(self.skim_predictors[i](hidden_states[:,1:,:]), hard=True, tau=1)
|
513 |
+
skim_mask = skim_mask[:,:,1]
|
514 |
+
skim_mask_with_cls = torch.ones(skim_mask.shape[0], skim_mask.shape[1]+1, device=skim_mask.device)
|
515 |
+
skim_mask_with_cls[:,1:] = skim_mask
|
516 |
+
skim_mask = skim_mask_with_cls
|
517 |
+
# multiple current layer skim mask with last layer skim mask
|
518 |
+
# to gurantee skimmed tokens are never recovered
|
519 |
+
if all_skim_mask:
|
520 |
+
skim_mask = skim_mask * all_skim_mask[-1]
|
521 |
+
all_skim_mask += (skim_mask, )
|
522 |
+
|
523 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
524 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
525 |
+
|
526 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
527 |
+
|
528 |
+
if use_cache:
|
529 |
+
logger.warning(
|
530 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
531 |
+
"`use_cache=False`..."
|
532 |
+
)
|
533 |
+
use_cache = False
|
534 |
+
|
535 |
+
def create_custom_forward(module):
|
536 |
+
def custom_forward(*inputs):
|
537 |
+
return module(*inputs, past_key_value, output_attentions)
|
538 |
+
|
539 |
+
return custom_forward
|
540 |
+
|
541 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
542 |
+
create_custom_forward(layer_module),
|
543 |
+
hidden_states,
|
544 |
+
attention_mask,
|
545 |
+
layer_head_mask,
|
546 |
+
encoder_hidden_states,
|
547 |
+
encoder_attention_mask,
|
548 |
+
)
|
549 |
+
else:
|
550 |
+
layer_outputs = layer_module(
|
551 |
+
hidden_states,
|
552 |
+
attention_mask,
|
553 |
+
layer_head_mask,
|
554 |
+
encoder_hidden_states,
|
555 |
+
encoder_attention_mask,
|
556 |
+
past_key_value,
|
557 |
+
output_attentions,
|
558 |
+
skim_mask,
|
559 |
+
)
|
560 |
+
|
561 |
+
hidden_states = layer_outputs[0]
|
562 |
+
forward_hidden_states = forward_hidden_states * (1-skim_mask.view(*skim_mask.shape,1)) + hidden_states * skim_mask.view(*skim_mask.shape,1)
|
563 |
+
if use_cache:
|
564 |
+
next_decoder_cache += (layer_outputs[-1],)
|
565 |
+
if output_attentions:
|
566 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
567 |
+
if self.config.add_cross_attention:
|
568 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
569 |
+
|
570 |
+
if output_hidden_states:
|
571 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
572 |
+
|
573 |
+
if not return_dict:
|
574 |
+
return tuple(
|
575 |
+
v
|
576 |
+
for v in [
|
577 |
+
forward_hidden_states,
|
578 |
+
next_decoder_cache,
|
579 |
+
all_hidden_states,
|
580 |
+
all_self_attentions,
|
581 |
+
all_cross_attentions,
|
582 |
+
]
|
583 |
+
if v is not None
|
584 |
+
)
|
585 |
+
return BaseModelOutputWithPastAndCrossAttentionsSkim(
|
586 |
+
last_hidden_state=forward_hidden_states,
|
587 |
+
past_key_values=next_decoder_cache,
|
588 |
+
hidden_states=all_hidden_states,
|
589 |
+
attentions=all_self_attentions,
|
590 |
+
cross_attentions=all_cross_attentions,
|
591 |
+
attention_mask=attention_mask,
|
592 |
+
skim_mask=all_skim_mask,
|
593 |
+
)
|
594 |
+
|
595 |
+
|
596 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
597 |
+
class RobertaPooler(nn.Module):
|
598 |
+
def __init__(self, config):
|
599 |
+
super().__init__()
|
600 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
601 |
+
self.activation = nn.Tanh()
|
602 |
+
|
603 |
+
def forward(self, hidden_states):
|
604 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
605 |
+
# to the first token.
|
606 |
+
first_token_tensor = hidden_states[:, 0]
|
607 |
+
pooled_output = self.dense(first_token_tensor)
|
608 |
+
pooled_output = self.activation(pooled_output)
|
609 |
+
return pooled_output
|
610 |
+
|
611 |
+
|
612 |
+
class RobertaPreTrainedModel(PreTrainedModel):
|
613 |
+
"""
|
614 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
615 |
+
models.
|
616 |
+
"""
|
617 |
+
|
618 |
+
config_class = RobertaConfig
|
619 |
+
base_model_prefix = "roberta"
|
620 |
+
|
621 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
622 |
+
def _init_weights(self, module):
|
623 |
+
"""Initialize the weights"""
|
624 |
+
if hasattr(module, '_skim_initialized') and module._skim_initialized:
|
625 |
+
return
|
626 |
+
if isinstance(module, nn.Linear):
|
627 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
628 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
629 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
630 |
+
if module.bias is not None:
|
631 |
+
module.bias.data.zero_()
|
632 |
+
elif isinstance(module, nn.Embedding):
|
633 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
634 |
+
if module.padding_idx is not None:
|
635 |
+
module.weight.data[module.padding_idx].zero_()
|
636 |
+
elif isinstance(module, nn.LayerNorm):
|
637 |
+
module.bias.data.zero_()
|
638 |
+
module.weight.data.fill_(1.0)
|
639 |
+
|
640 |
+
def update_keys_to_ignore(self, config, del_keys_to_ignore):
|
641 |
+
"""Remove some keys from ignore list"""
|
642 |
+
if not config.tie_word_embeddings:
|
643 |
+
# must make a new list, or the class variable gets modified!
|
644 |
+
self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore]
|
645 |
+
self._keys_to_ignore_on_load_missing = [
|
646 |
+
k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore
|
647 |
+
]
|
648 |
+
|
649 |
+
|
650 |
+
ROBERTA_START_DOCSTRING = r"""
|
651 |
+
|
652 |
+
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
653 |
+
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
654 |
+
pruning heads etc.)
|
655 |
+
|
656 |
+
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
657 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
658 |
+
general usage and behavior.
|
659 |
+
|
660 |
+
Parameters:
|
661 |
+
config (:class:`~transformers.RobertaConfig`): Model configuration class with all the parameters of the
|
662 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
663 |
+
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
664 |
+
weights.
|
665 |
+
"""
|
666 |
+
|
667 |
+
ROBERTA_INPUTS_DOCSTRING = r"""
|
668 |
+
Args:
|
669 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
670 |
+
Indices of input sequence tokens in the vocabulary.
|
671 |
+
|
672 |
+
Indices can be obtained using :class:`~transformers.RobertaTokenizer`. See
|
673 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
674 |
+
details.
|
675 |
+
|
676 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
677 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
678 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
679 |
+
|
680 |
+
- 1 for tokens that are **not masked**,
|
681 |
+
- 0 for tokens that are **masked**.
|
682 |
+
|
683 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
684 |
+
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
685 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
686 |
+
1]``:
|
687 |
+
|
688 |
+
- 0 corresponds to a `sentence A` token,
|
689 |
+
- 1 corresponds to a `sentence B` token.
|
690 |
+
|
691 |
+
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
692 |
+
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
693 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
694 |
+
config.max_position_embeddings - 1]``.
|
695 |
+
|
696 |
+
`What are position IDs? <../glossary.html#position-ids>`_
|
697 |
+
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
698 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
699 |
+
|
700 |
+
- 1 indicates the head is **not masked**,
|
701 |
+
- 0 indicates the head is **masked**.
|
702 |
+
|
703 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
704 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
705 |
+
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
706 |
+
vectors than the model's internal embedding lookup matrix.
|
707 |
+
output_attentions (:obj:`bool`, `optional`):
|
708 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
709 |
+
tensors for more detail.
|
710 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
711 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
712 |
+
more detail.
|
713 |
+
return_dict (:obj:`bool`, `optional`):
|
714 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
715 |
+
"""
|
716 |
+
|
717 |
+
|
718 |
+
@add_start_docstrings(
|
719 |
+
"The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
|
720 |
+
ROBERTA_START_DOCSTRING,
|
721 |
+
)
|
722 |
+
class RobertaModel(RobertaPreTrainedModel):
|
723 |
+
"""
|
724 |
+
|
725 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
726 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
727 |
+
all you need`_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
728 |
+
Kaiser and Illia Polosukhin.
|
729 |
+
|
730 |
+
To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration
|
731 |
+
set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder`
|
732 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
733 |
+
input to the forward pass.
|
734 |
+
|
735 |
+
.. _`Attention is all you need`: https://arxiv.org/abs/1706.03762
|
736 |
+
|
737 |
+
"""
|
738 |
+
|
739 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
740 |
+
|
741 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta
|
742 |
+
def __init__(self, config, add_pooling_layer=True):
|
743 |
+
super().__init__(config)
|
744 |
+
self.config = config
|
745 |
+
|
746 |
+
self.embeddings = RobertaEmbeddings(config)
|
747 |
+
self.encoder = RobertaEncoder(config)
|
748 |
+
|
749 |
+
self.pooler = RobertaPooler(config) if add_pooling_layer else None
|
750 |
+
|
751 |
+
self.init_weights()
|
752 |
+
|
753 |
+
def get_input_embeddings(self):
|
754 |
+
return self.embeddings.word_embeddings
|
755 |
+
|
756 |
+
def set_input_embeddings(self, value):
|
757 |
+
self.embeddings.word_embeddings = value
|
758 |
+
|
759 |
+
def _prune_heads(self, heads_to_prune):
|
760 |
+
"""
|
761 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
762 |
+
class PreTrainedModel
|
763 |
+
"""
|
764 |
+
for layer, heads in heads_to_prune.items():
|
765 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
766 |
+
|
767 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
768 |
+
@add_code_sample_docstrings(
|
769 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
770 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
771 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
772 |
+
config_class=_CONFIG_FOR_DOC,
|
773 |
+
)
|
774 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
|
775 |
+
def forward(
|
776 |
+
self,
|
777 |
+
input_ids=None,
|
778 |
+
attention_mask=None,
|
779 |
+
token_type_ids=None,
|
780 |
+
position_ids=None,
|
781 |
+
head_mask=None,
|
782 |
+
inputs_embeds=None,
|
783 |
+
encoder_hidden_states=None,
|
784 |
+
encoder_attention_mask=None,
|
785 |
+
past_key_values=None,
|
786 |
+
use_cache=None,
|
787 |
+
output_attentions=None,
|
788 |
+
output_hidden_states=None,
|
789 |
+
return_dict=None,
|
790 |
+
):
|
791 |
+
r"""
|
792 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
793 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
794 |
+
the model is configured as a decoder.
|
795 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
796 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
797 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
798 |
+
|
799 |
+
- 1 for tokens that are **not masked**,
|
800 |
+
- 0 for tokens that are **masked**.
|
801 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
802 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
803 |
+
|
804 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
805 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
806 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
807 |
+
use_cache (:obj:`bool`, `optional`):
|
808 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
809 |
+
decoding (see :obj:`past_key_values`).
|
810 |
+
"""
|
811 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
812 |
+
output_hidden_states = (
|
813 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
814 |
+
)
|
815 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
816 |
+
|
817 |
+
if self.config.is_decoder:
|
818 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
819 |
+
else:
|
820 |
+
use_cache = False
|
821 |
+
|
822 |
+
if input_ids is not None and inputs_embeds is not None:
|
823 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
824 |
+
elif input_ids is not None:
|
825 |
+
input_shape = input_ids.size()
|
826 |
+
elif inputs_embeds is not None:
|
827 |
+
input_shape = inputs_embeds.size()[:-1]
|
828 |
+
else:
|
829 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
830 |
+
|
831 |
+
batch_size, seq_length = input_shape
|
832 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
833 |
+
|
834 |
+
# past_key_values_length
|
835 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
836 |
+
|
837 |
+
if attention_mask is None:
|
838 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
839 |
+
|
840 |
+
if token_type_ids is None:
|
841 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
842 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
843 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
844 |
+
token_type_ids = buffered_token_type_ids_expanded
|
845 |
+
else:
|
846 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
847 |
+
|
848 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
849 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
850 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
851 |
+
|
852 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
853 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
854 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
855 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
856 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
857 |
+
if encoder_attention_mask is None:
|
858 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
859 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
860 |
+
else:
|
861 |
+
encoder_extended_attention_mask = None
|
862 |
+
|
863 |
+
# Prepare head mask if needed
|
864 |
+
# 1.0 in head_mask indicate we keep the head
|
865 |
+
# attention_probs has shape bsz x n_heads x N x N
|
866 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
867 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
868 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
869 |
+
|
870 |
+
embedding_output = self.embeddings(
|
871 |
+
input_ids=input_ids,
|
872 |
+
position_ids=position_ids,
|
873 |
+
token_type_ids=token_type_ids,
|
874 |
+
inputs_embeds=inputs_embeds,
|
875 |
+
past_key_values_length=past_key_values_length,
|
876 |
+
)
|
877 |
+
encoder_outputs = self.encoder(
|
878 |
+
embedding_output,
|
879 |
+
attention_mask=extended_attention_mask,
|
880 |
+
head_mask=head_mask,
|
881 |
+
encoder_hidden_states=encoder_hidden_states,
|
882 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
883 |
+
past_key_values=past_key_values,
|
884 |
+
use_cache=use_cache,
|
885 |
+
output_attentions=output_attentions,
|
886 |
+
output_hidden_states=output_hidden_states,
|
887 |
+
return_dict=return_dict,
|
888 |
+
)
|
889 |
+
sequence_output = encoder_outputs[0]
|
890 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
891 |
+
|
892 |
+
if not return_dict:
|
893 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
894 |
+
|
895 |
+
return BaseModelOutputWithPoolingAndCrossAttentionsSkim(
|
896 |
+
last_hidden_state=sequence_output,
|
897 |
+
pooler_output=pooled_output,
|
898 |
+
past_key_values=encoder_outputs.past_key_values,
|
899 |
+
hidden_states=encoder_outputs.hidden_states,
|
900 |
+
attentions=encoder_outputs.attentions,
|
901 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
902 |
+
attention_mask=encoder_outputs.attention_mask,
|
903 |
+
skim_mask=encoder_outputs.skim_mask,
|
904 |
+
)
|
905 |
+
|
906 |
+
|
907 |
+
@add_start_docstrings(
|
908 |
+
"""RoBERTa Model with a `language modeling` head on top for CLM fine-tuning. """, ROBERTA_START_DOCSTRING
|
909 |
+
)
|
910 |
+
class RobertaForCausalLM(RobertaPreTrainedModel):
|
911 |
+
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
912 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
913 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
914 |
+
|
915 |
+
def __init__(self, config):
|
916 |
+
super().__init__(config)
|
917 |
+
|
918 |
+
if not config.is_decoder:
|
919 |
+
logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
|
920 |
+
|
921 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
922 |
+
self.lm_head = RobertaLMHead(config)
|
923 |
+
|
924 |
+
# The LM head weights require special treatment only when they are tied with the word embeddings
|
925 |
+
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
926 |
+
|
927 |
+
self.init_weights()
|
928 |
+
|
929 |
+
def get_output_embeddings(self):
|
930 |
+
return self.lm_head.decoder
|
931 |
+
|
932 |
+
def set_output_embeddings(self, new_embeddings):
|
933 |
+
self.lm_head.decoder = new_embeddings
|
934 |
+
|
935 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
936 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
937 |
+
def forward(
|
938 |
+
self,
|
939 |
+
input_ids=None,
|
940 |
+
attention_mask=None,
|
941 |
+
token_type_ids=None,
|
942 |
+
position_ids=None,
|
943 |
+
head_mask=None,
|
944 |
+
inputs_embeds=None,
|
945 |
+
encoder_hidden_states=None,
|
946 |
+
encoder_attention_mask=None,
|
947 |
+
labels=None,
|
948 |
+
past_key_values=None,
|
949 |
+
use_cache=None,
|
950 |
+
output_attentions=None,
|
951 |
+
output_hidden_states=None,
|
952 |
+
return_dict=None,
|
953 |
+
):
|
954 |
+
r"""
|
955 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
956 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
957 |
+
the model is configured as a decoder.
|
958 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
959 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
960 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
961 |
+
|
962 |
+
- 1 for tokens that are **not masked**,
|
963 |
+
- 0 for tokens that are **masked**.
|
964 |
+
|
965 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
966 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
967 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
968 |
+
ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
969 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
970 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
971 |
+
|
972 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
973 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
974 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
975 |
+
use_cache (:obj:`bool`, `optional`):
|
976 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
977 |
+
decoding (see :obj:`past_key_values`).
|
978 |
+
|
979 |
+
Returns:
|
980 |
+
|
981 |
+
Example::
|
982 |
+
|
983 |
+
>>> from transformers import RobertaTokenizer, RobertaForCausalLM, RobertaConfig
|
984 |
+
>>> import torch
|
985 |
+
|
986 |
+
>>> tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
987 |
+
>>> config = RobertaConfig.from_pretrained("roberta-base")
|
988 |
+
>>> config.is_decoder = True
|
989 |
+
>>> model = RobertaForCausalLM.from_pretrained('roberta-base', config=config)
|
990 |
+
|
991 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
992 |
+
>>> outputs = model(**inputs)
|
993 |
+
|
994 |
+
>>> prediction_logits = outputs.logits
|
995 |
+
"""
|
996 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
997 |
+
if labels is not None:
|
998 |
+
use_cache = False
|
999 |
+
|
1000 |
+
outputs = self.roberta(
|
1001 |
+
input_ids,
|
1002 |
+
attention_mask=attention_mask,
|
1003 |
+
token_type_ids=token_type_ids,
|
1004 |
+
position_ids=position_ids,
|
1005 |
+
head_mask=head_mask,
|
1006 |
+
inputs_embeds=inputs_embeds,
|
1007 |
+
encoder_hidden_states=encoder_hidden_states,
|
1008 |
+
encoder_attention_mask=encoder_attention_mask,
|
1009 |
+
past_key_values=past_key_values,
|
1010 |
+
use_cache=use_cache,
|
1011 |
+
output_attentions=output_attentions,
|
1012 |
+
output_hidden_states=output_hidden_states,
|
1013 |
+
return_dict=return_dict,
|
1014 |
+
)
|
1015 |
+
|
1016 |
+
sequence_output = outputs[0]
|
1017 |
+
prediction_scores = self.lm_head(sequence_output)
|
1018 |
+
|
1019 |
+
lm_loss = None
|
1020 |
+
if labels is not None:
|
1021 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1022 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1023 |
+
labels = labels[:, 1:].contiguous()
|
1024 |
+
loss_fct = CrossEntropyLoss()
|
1025 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1026 |
+
|
1027 |
+
if not return_dict:
|
1028 |
+
output = (prediction_scores,) + outputs[2:]
|
1029 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1030 |
+
|
1031 |
+
return CausalLMOutputWithCrossAttentions(
|
1032 |
+
loss=lm_loss,
|
1033 |
+
logits=prediction_scores,
|
1034 |
+
past_key_values=outputs.past_key_values,
|
1035 |
+
hidden_states=outputs.hidden_states,
|
1036 |
+
attentions=outputs.attentions,
|
1037 |
+
cross_attentions=outputs.cross_attentions,
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
1041 |
+
input_shape = input_ids.shape
|
1042 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1043 |
+
if attention_mask is None:
|
1044 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1045 |
+
|
1046 |
+
# cut decoder_input_ids if past is used
|
1047 |
+
if past is not None:
|
1048 |
+
input_ids = input_ids[:, -1:]
|
1049 |
+
|
1050 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past}
|
1051 |
+
|
1052 |
+
def _reorder_cache(self, past, beam_idx):
|
1053 |
+
reordered_past = ()
|
1054 |
+
for layer_past in past:
|
1055 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1056 |
+
return reordered_past
|
1057 |
+
|
1058 |
+
|
1059 |
+
@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top. """, ROBERTA_START_DOCSTRING)
|
1060 |
+
class RobertaForMaskedLM(RobertaPreTrainedModel):
|
1061 |
+
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
1062 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
1063 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1064 |
+
|
1065 |
+
def __init__(self, config):
|
1066 |
+
super().__init__(config)
|
1067 |
+
|
1068 |
+
if config.is_decoder:
|
1069 |
+
logger.warning(
|
1070 |
+
"If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
|
1071 |
+
"bi-directional self-attention."
|
1072 |
+
)
|
1073 |
+
|
1074 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1075 |
+
self.lm_head = RobertaLMHead(config)
|
1076 |
+
|
1077 |
+
# The LM head weights require special treatment only when they are tied with the word embeddings
|
1078 |
+
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
1079 |
+
|
1080 |
+
self.init_weights()
|
1081 |
+
|
1082 |
+
def get_output_embeddings(self):
|
1083 |
+
return self.lm_head.decoder
|
1084 |
+
|
1085 |
+
def set_output_embeddings(self, new_embeddings):
|
1086 |
+
self.lm_head.decoder = new_embeddings
|
1087 |
+
|
1088 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1089 |
+
@add_code_sample_docstrings(
|
1090 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1091 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1092 |
+
output_type=MaskedLMOutput,
|
1093 |
+
config_class=_CONFIG_FOR_DOC,
|
1094 |
+
mask="<mask>",
|
1095 |
+
)
|
1096 |
+
def forward(
|
1097 |
+
self,
|
1098 |
+
input_ids=None,
|
1099 |
+
attention_mask=None,
|
1100 |
+
token_type_ids=None,
|
1101 |
+
position_ids=None,
|
1102 |
+
head_mask=None,
|
1103 |
+
inputs_embeds=None,
|
1104 |
+
encoder_hidden_states=None,
|
1105 |
+
encoder_attention_mask=None,
|
1106 |
+
labels=None,
|
1107 |
+
output_attentions=None,
|
1108 |
+
output_hidden_states=None,
|
1109 |
+
return_dict=None,
|
1110 |
+
):
|
1111 |
+
r"""
|
1112 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1113 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1114 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1115 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1116 |
+
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
|
1117 |
+
Used to hide legacy arguments that have been deprecated.
|
1118 |
+
"""
|
1119 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1120 |
+
|
1121 |
+
outputs = self.roberta(
|
1122 |
+
input_ids,
|
1123 |
+
attention_mask=attention_mask,
|
1124 |
+
token_type_ids=token_type_ids,
|
1125 |
+
position_ids=position_ids,
|
1126 |
+
head_mask=head_mask,
|
1127 |
+
inputs_embeds=inputs_embeds,
|
1128 |
+
encoder_hidden_states=encoder_hidden_states,
|
1129 |
+
encoder_attention_mask=encoder_attention_mask,
|
1130 |
+
output_attentions=output_attentions,
|
1131 |
+
output_hidden_states=output_hidden_states,
|
1132 |
+
return_dict=return_dict,
|
1133 |
+
)
|
1134 |
+
sequence_output = outputs[0]
|
1135 |
+
prediction_scores = self.lm_head(sequence_output)
|
1136 |
+
|
1137 |
+
masked_lm_loss = None
|
1138 |
+
if labels is not None:
|
1139 |
+
loss_fct = CrossEntropyLoss()
|
1140 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1141 |
+
|
1142 |
+
if not return_dict:
|
1143 |
+
output = (prediction_scores,) + outputs[2:]
|
1144 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1145 |
+
|
1146 |
+
return MaskedLMOutput(
|
1147 |
+
loss=masked_lm_loss,
|
1148 |
+
logits=prediction_scores,
|
1149 |
+
hidden_states=outputs.hidden_states,
|
1150 |
+
attentions=outputs.attentions,
|
1151 |
+
)
|
1152 |
+
|
1153 |
+
|
1154 |
+
class RobertaLMHead(nn.Module):
|
1155 |
+
"""Roberta Head for masked language modeling."""
|
1156 |
+
|
1157 |
+
def __init__(self, config):
|
1158 |
+
super().__init__()
|
1159 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1160 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1161 |
+
|
1162 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
1163 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1164 |
+
self.decoder.bias = self.bias
|
1165 |
+
|
1166 |
+
def forward(self, features, **kwargs):
|
1167 |
+
x = self.dense(features)
|
1168 |
+
x = gelu(x)
|
1169 |
+
x = self.layer_norm(x)
|
1170 |
+
|
1171 |
+
# project back to size of vocabulary with bias
|
1172 |
+
x = self.decoder(x)
|
1173 |
+
|
1174 |
+
return x
|
1175 |
+
|
1176 |
+
def _tie_weights(self):
|
1177 |
+
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
|
1178 |
+
self.bias = self.decoder.bias
|
1179 |
+
|
1180 |
+
|
1181 |
+
@add_start_docstrings(
|
1182 |
+
"""
|
1183 |
+
RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1184 |
+
pooled output) e.g. for GLUE tasks.
|
1185 |
+
""",
|
1186 |
+
ROBERTA_START_DOCSTRING,
|
1187 |
+
)
|
1188 |
+
class RobertaForSequenceClassification(RobertaPreTrainedModel):
|
1189 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1190 |
+
|
1191 |
+
def __init__(self, config):
|
1192 |
+
super().__init__(config)
|
1193 |
+
self.num_labels = config.num_labels
|
1194 |
+
self.config = config
|
1195 |
+
|
1196 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1197 |
+
self.classifier = RobertaClassificationHead(config)
|
1198 |
+
|
1199 |
+
self.skim_coefficient = config.skim_coefficient if hasattr(config, 'skim_coefficient') else 1
|
1200 |
+
|
1201 |
+
self.init_weights()
|
1202 |
+
|
1203 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1204 |
+
@add_code_sample_docstrings(
|
1205 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1206 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1207 |
+
output_type=SequenceClassifierOutput,
|
1208 |
+
config_class=_CONFIG_FOR_DOC,
|
1209 |
+
)
|
1210 |
+
def forward(
|
1211 |
+
self,
|
1212 |
+
input_ids=None,
|
1213 |
+
attention_mask=None,
|
1214 |
+
token_type_ids=None,
|
1215 |
+
position_ids=None,
|
1216 |
+
head_mask=None,
|
1217 |
+
inputs_embeds=None,
|
1218 |
+
labels=None,
|
1219 |
+
output_attentions=None,
|
1220 |
+
output_hidden_states=None,
|
1221 |
+
return_dict=None,
|
1222 |
+
):
|
1223 |
+
r"""
|
1224 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1225 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
1226 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1227 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1228 |
+
"""
|
1229 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1230 |
+
|
1231 |
+
outputs = self.roberta(
|
1232 |
+
input_ids,
|
1233 |
+
attention_mask=attention_mask,
|
1234 |
+
token_type_ids=token_type_ids,
|
1235 |
+
position_ids=position_ids,
|
1236 |
+
head_mask=head_mask,
|
1237 |
+
inputs_embeds=inputs_embeds,
|
1238 |
+
output_attentions=output_attentions,
|
1239 |
+
output_hidden_states=output_hidden_states,
|
1240 |
+
return_dict=return_dict,
|
1241 |
+
)
|
1242 |
+
sequence_output = outputs[0]
|
1243 |
+
logits = self.classifier(sequence_output)
|
1244 |
+
|
1245 |
+
loss = None
|
1246 |
+
if labels is not None:
|
1247 |
+
if self.config.problem_type is None:
|
1248 |
+
if self.num_labels == 1:
|
1249 |
+
self.config.problem_type = "regression"
|
1250 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1251 |
+
self.config.problem_type = "single_label_classification"
|
1252 |
+
else:
|
1253 |
+
self.config.problem_type = "multi_label_classification"
|
1254 |
+
|
1255 |
+
if self.config.problem_type == "regression":
|
1256 |
+
loss_fct = MSELoss()
|
1257 |
+
if self.num_labels == 1:
|
1258 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1259 |
+
else:
|
1260 |
+
loss = loss_fct(logits, labels)
|
1261 |
+
elif self.config.problem_type == "single_label_classification":
|
1262 |
+
loss_fct = CrossEntropyLoss()
|
1263 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1264 |
+
elif self.config.problem_type == "multi_label_classification":
|
1265 |
+
loss_fct = BCEWithLogitsLoss()
|
1266 |
+
loss = loss_fct(logits, labels)
|
1267 |
+
|
1268 |
+
if not return_dict:
|
1269 |
+
output = (logits,) + outputs[2:]
|
1270 |
+
return ((loss,) + output) if loss is not None else output
|
1271 |
+
|
1272 |
+
skim_loss, neat_mac = 0.0, 0.0
|
1273 |
+
layer_neat_mac = list()
|
1274 |
+
all_tokens_length = torch.mean(torch.sum(attention_mask.to(torch.float32),dim=-1))
|
1275 |
+
for mask in outputs.skim_mask:
|
1276 |
+
accumulated_skim_mask = torch.mean(torch.sum(mask,dim=1))
|
1277 |
+
skim_loss += accumulated_skim_mask/mask.shape[1]
|
1278 |
+
layer_neat_mac.append(accumulated_skim_mask/all_tokens_length)
|
1279 |
+
neat_mac += accumulated_skim_mask/all_tokens_length
|
1280 |
+
skim_loss /= self.config.num_hidden_layers
|
1281 |
+
neat_mac /= self.config.num_hidden_layers
|
1282 |
+
classification_loss = loss
|
1283 |
+
# print(skim_loss, neat_mac, loss)
|
1284 |
+
# loss = skim_loss
|
1285 |
+
loss = self.skim_coefficient * skim_loss + loss
|
1286 |
+
|
1287 |
+
return SequenceClassifierOutputSkim(
|
1288 |
+
loss=loss,
|
1289 |
+
logits=logits,
|
1290 |
+
hidden_states=outputs.hidden_states,
|
1291 |
+
attentions=outputs.attentions,
|
1292 |
+
attention_mask=outputs.attention_mask,
|
1293 |
+
skim_mask=outputs.skim_mask,
|
1294 |
+
skim_loss=skim_loss,
|
1295 |
+
classification_loss=classification_loss,
|
1296 |
+
tokens_remained=neat_mac,
|
1297 |
+
layer_tokens_remained=layer_neat_mac,
|
1298 |
+
)
|
1299 |
+
|
1300 |
+
|
1301 |
+
@add_start_docstrings(
|
1302 |
+
"""
|
1303 |
+
Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1304 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1305 |
+
""",
|
1306 |
+
ROBERTA_START_DOCSTRING,
|
1307 |
+
)
|
1308 |
+
class RobertaForMultipleChoice(RobertaPreTrainedModel):
|
1309 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1310 |
+
|
1311 |
+
def __init__(self, config):
|
1312 |
+
super().__init__(config)
|
1313 |
+
|
1314 |
+
self.roberta = RobertaModel(config)
|
1315 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1316 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1317 |
+
|
1318 |
+
self.init_weights()
|
1319 |
+
|
1320 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1321 |
+
@add_code_sample_docstrings(
|
1322 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1323 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1324 |
+
output_type=MultipleChoiceModelOutput,
|
1325 |
+
config_class=_CONFIG_FOR_DOC,
|
1326 |
+
)
|
1327 |
+
def forward(
|
1328 |
+
self,
|
1329 |
+
input_ids=None,
|
1330 |
+
token_type_ids=None,
|
1331 |
+
attention_mask=None,
|
1332 |
+
labels=None,
|
1333 |
+
position_ids=None,
|
1334 |
+
head_mask=None,
|
1335 |
+
inputs_embeds=None,
|
1336 |
+
output_attentions=None,
|
1337 |
+
output_hidden_states=None,
|
1338 |
+
return_dict=None,
|
1339 |
+
):
|
1340 |
+
r"""
|
1341 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1342 |
+
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
|
1343 |
+
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
|
1344 |
+
:obj:`input_ids` above)
|
1345 |
+
"""
|
1346 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1347 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1348 |
+
|
1349 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1350 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1351 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1352 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1353 |
+
flat_inputs_embeds = (
|
1354 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1355 |
+
if inputs_embeds is not None
|
1356 |
+
else None
|
1357 |
+
)
|
1358 |
+
|
1359 |
+
outputs = self.roberta(
|
1360 |
+
flat_input_ids,
|
1361 |
+
position_ids=flat_position_ids,
|
1362 |
+
token_type_ids=flat_token_type_ids,
|
1363 |
+
attention_mask=flat_attention_mask,
|
1364 |
+
head_mask=head_mask,
|
1365 |
+
inputs_embeds=flat_inputs_embeds,
|
1366 |
+
output_attentions=output_attentions,
|
1367 |
+
output_hidden_states=output_hidden_states,
|
1368 |
+
return_dict=return_dict,
|
1369 |
+
)
|
1370 |
+
pooled_output = outputs[1]
|
1371 |
+
|
1372 |
+
pooled_output = self.dropout(pooled_output)
|
1373 |
+
logits = self.classifier(pooled_output)
|
1374 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1375 |
+
|
1376 |
+
loss = None
|
1377 |
+
if labels is not None:
|
1378 |
+
loss_fct = CrossEntropyLoss()
|
1379 |
+
loss = loss_fct(reshaped_logits, labels)
|
1380 |
+
|
1381 |
+
if not return_dict:
|
1382 |
+
output = (reshaped_logits,) + outputs[2:]
|
1383 |
+
return ((loss,) + output) if loss is not None else output
|
1384 |
+
|
1385 |
+
return MultipleChoiceModelOutput(
|
1386 |
+
loss=loss,
|
1387 |
+
logits=reshaped_logits,
|
1388 |
+
hidden_states=outputs.hidden_states,
|
1389 |
+
attentions=outputs.attentions,
|
1390 |
+
)
|
1391 |
+
|
1392 |
+
|
1393 |
+
@add_start_docstrings(
|
1394 |
+
"""
|
1395 |
+
Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1396 |
+
Named-Entity-Recognition (NER) tasks.
|
1397 |
+
""",
|
1398 |
+
ROBERTA_START_DOCSTRING,
|
1399 |
+
)
|
1400 |
+
class RobertaForTokenClassification(RobertaPreTrainedModel):
|
1401 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1402 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1403 |
+
|
1404 |
+
def __init__(self, config):
|
1405 |
+
super().__init__(config)
|
1406 |
+
self.num_labels = config.num_labels
|
1407 |
+
|
1408 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1409 |
+
classifier_dropout = (
|
1410 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1411 |
+
)
|
1412 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1413 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1414 |
+
|
1415 |
+
self.init_weights()
|
1416 |
+
|
1417 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1418 |
+
@add_code_sample_docstrings(
|
1419 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1420 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1421 |
+
output_type=TokenClassifierOutput,
|
1422 |
+
config_class=_CONFIG_FOR_DOC,
|
1423 |
+
)
|
1424 |
+
def forward(
|
1425 |
+
self,
|
1426 |
+
input_ids=None,
|
1427 |
+
attention_mask=None,
|
1428 |
+
token_type_ids=None,
|
1429 |
+
position_ids=None,
|
1430 |
+
head_mask=None,
|
1431 |
+
inputs_embeds=None,
|
1432 |
+
labels=None,
|
1433 |
+
output_attentions=None,
|
1434 |
+
output_hidden_states=None,
|
1435 |
+
return_dict=None,
|
1436 |
+
):
|
1437 |
+
r"""
|
1438 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1439 |
+
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
|
1440 |
+
1]``.
|
1441 |
+
"""
|
1442 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1443 |
+
|
1444 |
+
outputs = self.roberta(
|
1445 |
+
input_ids,
|
1446 |
+
attention_mask=attention_mask,
|
1447 |
+
token_type_ids=token_type_ids,
|
1448 |
+
position_ids=position_ids,
|
1449 |
+
head_mask=head_mask,
|
1450 |
+
inputs_embeds=inputs_embeds,
|
1451 |
+
output_attentions=output_attentions,
|
1452 |
+
output_hidden_states=output_hidden_states,
|
1453 |
+
return_dict=return_dict,
|
1454 |
+
)
|
1455 |
+
|
1456 |
+
sequence_output = outputs[0]
|
1457 |
+
|
1458 |
+
sequence_output = self.dropout(sequence_output)
|
1459 |
+
logits = self.classifier(sequence_output)
|
1460 |
+
|
1461 |
+
loss = None
|
1462 |
+
if labels is not None:
|
1463 |
+
loss_fct = CrossEntropyLoss()
|
1464 |
+
# Only keep active parts of the loss
|
1465 |
+
if attention_mask is not None:
|
1466 |
+
active_loss = attention_mask.view(-1) == 1
|
1467 |
+
active_logits = logits.view(-1, self.num_labels)
|
1468 |
+
active_labels = torch.where(
|
1469 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
1470 |
+
)
|
1471 |
+
loss = loss_fct(active_logits, active_labels)
|
1472 |
+
else:
|
1473 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1474 |
+
|
1475 |
+
if not return_dict:
|
1476 |
+
output = (logits,) + outputs[2:]
|
1477 |
+
return ((loss,) + output) if loss is not None else output
|
1478 |
+
|
1479 |
+
return TokenClassifierOutput(
|
1480 |
+
loss=loss,
|
1481 |
+
logits=logits,
|
1482 |
+
hidden_states=outputs.hidden_states,
|
1483 |
+
attentions=outputs.attentions,
|
1484 |
+
)
|
1485 |
+
|
1486 |
+
|
1487 |
+
class RobertaClassificationHead(nn.Module):
|
1488 |
+
"""Head for sentence-level classification tasks."""
|
1489 |
+
|
1490 |
+
def __init__(self, config):
|
1491 |
+
super().__init__()
|
1492 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1493 |
+
classifier_dropout = (
|
1494 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1495 |
+
)
|
1496 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1497 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
1498 |
+
|
1499 |
+
def forward(self, features, **kwargs):
|
1500 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1501 |
+
x = self.dropout(x)
|
1502 |
+
x = self.dense(x)
|
1503 |
+
x = torch.tanh(x)
|
1504 |
+
x = self.dropout(x)
|
1505 |
+
x = self.out_proj(x)
|
1506 |
+
return x
|
1507 |
+
|
1508 |
+
|
1509 |
+
@add_start_docstrings(
|
1510 |
+
"""
|
1511 |
+
Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1512 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1513 |
+
""",
|
1514 |
+
ROBERTA_START_DOCSTRING,
|
1515 |
+
)
|
1516 |
+
class RobertaForQuestionAnswering(RobertaPreTrainedModel):
|
1517 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1518 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1519 |
+
|
1520 |
+
def __init__(self, config):
|
1521 |
+
super().__init__(config)
|
1522 |
+
self.num_labels = config.num_labels
|
1523 |
+
|
1524 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1525 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1526 |
+
|
1527 |
+
self.init_weights()
|
1528 |
+
|
1529 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1530 |
+
@add_code_sample_docstrings(
|
1531 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1532 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1533 |
+
output_type=QuestionAnsweringModelOutput,
|
1534 |
+
config_class=_CONFIG_FOR_DOC,
|
1535 |
+
)
|
1536 |
+
def forward(
|
1537 |
+
self,
|
1538 |
+
input_ids=None,
|
1539 |
+
attention_mask=None,
|
1540 |
+
token_type_ids=None,
|
1541 |
+
position_ids=None,
|
1542 |
+
head_mask=None,
|
1543 |
+
inputs_embeds=None,
|
1544 |
+
start_positions=None,
|
1545 |
+
end_positions=None,
|
1546 |
+
output_attentions=None,
|
1547 |
+
output_hidden_states=None,
|
1548 |
+
return_dict=None,
|
1549 |
+
):
|
1550 |
+
r"""
|
1551 |
+
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1552 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1553 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
1554 |
+
sequence are not taken into account for computing the loss.
|
1555 |
+
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1556 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1557 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
1558 |
+
sequence are not taken into account for computing the loss.
|
1559 |
+
"""
|
1560 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1561 |
+
|
1562 |
+
outputs = self.roberta(
|
1563 |
+
input_ids,
|
1564 |
+
attention_mask=attention_mask,
|
1565 |
+
token_type_ids=token_type_ids,
|
1566 |
+
position_ids=position_ids,
|
1567 |
+
head_mask=head_mask,
|
1568 |
+
inputs_embeds=inputs_embeds,
|
1569 |
+
output_attentions=output_attentions,
|
1570 |
+
output_hidden_states=output_hidden_states,
|
1571 |
+
return_dict=return_dict,
|
1572 |
+
)
|
1573 |
+
|
1574 |
+
sequence_output = outputs[0]
|
1575 |
+
|
1576 |
+
logits = self.qa_outputs(sequence_output)
|
1577 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1578 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1579 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1580 |
+
|
1581 |
+
total_loss = None
|
1582 |
+
if start_positions is not None and end_positions is not None:
|
1583 |
+
# If we are on multi-GPU, split add a dimension
|
1584 |
+
if len(start_positions.size()) > 1:
|
1585 |
+
start_positions = start_positions.squeeze(-1)
|
1586 |
+
if len(end_positions.size()) > 1:
|
1587 |
+
end_positions = end_positions.squeeze(-1)
|
1588 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1589 |
+
ignored_index = start_logits.size(1)
|
1590 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1591 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1592 |
+
|
1593 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1594 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1595 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1596 |
+
total_loss = (start_loss + end_loss) / 2
|
1597 |
+
|
1598 |
+
if not return_dict:
|
1599 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1600 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1601 |
+
|
1602 |
+
return QuestionAnsweringModelOutput(
|
1603 |
+
loss=total_loss,
|
1604 |
+
start_logits=start_logits,
|
1605 |
+
end_logits=end_logits,
|
1606 |
+
hidden_states=outputs.hidden_states,
|
1607 |
+
attentions=outputs.attentions,
|
1608 |
+
)
|
1609 |
+
|
1610 |
+
|
1611 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
1612 |
+
"""
|
1613 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1614 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
1615 |
+
|
1616 |
+
Args:
|
1617 |
+
x: torch.Tensor x:
|
1618 |
+
|
1619 |
+
Returns: torch.Tensor
|
1620 |
+
"""
|
1621 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1622 |
+
mask = input_ids.ne(padding_idx).int()
|
1623 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
1624 |
+
return incremental_indices.long() + padding_idx
|
test_module/modeling_utils.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import torch
|
3 |
+
from transformers.file_utils import ModelOutput
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
from transformers.modeling_outputs import MaskedLMOutput, QuestionAnsweringModelOutput
|
7 |
+
|
8 |
+
@dataclass
|
9 |
+
class BaseModelOutputWithPastAndCrossAttentionsSkim(ModelOutput):
|
10 |
+
last_hidden_state: torch.FloatTensor = None
|
11 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
12 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
13 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
14 |
+
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
15 |
+
attention_mask: Optional[torch.FloatTensor] = None
|
16 |
+
skim_mask: Optional[torch.FloatTensor] = None
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class BaseModelOutputWithPoolingAndCrossAttentionsSkim(ModelOutput):
|
20 |
+
last_hidden_state: torch.FloatTensor = None
|
21 |
+
pooler_output: torch.FloatTensor = None
|
22 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
23 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
24 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
25 |
+
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
26 |
+
attention_mask: Optional[torch.FloatTensor] = None
|
27 |
+
skim_mask: Optional[torch.FloatTensor] = None
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class SequenceClassifierOutputSkim(ModelOutput):
|
32 |
+
loss: Optional[torch.FloatTensor] = None
|
33 |
+
logits: torch.FloatTensor = None
|
34 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
35 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
36 |
+
attention_mask: Optional[torch.FloatTensor] = None
|
37 |
+
skim_mask: Optional[torch.FloatTensor] = None
|
38 |
+
skim_loss: Optional[torch.FloatTensor] = None
|
39 |
+
classification_loss: Optional[torch.FloatTensor] = None
|
40 |
+
tokens_remained: Optional[torch.FloatTensor] = None
|
41 |
+
layer_tokens_remained: Optional[Tuple[torch.FloatTensor]] = None
|
42 |
+
|
43 |
+
@dataclass
|
44 |
+
class QuestionAnsweringModelOutputSkim(QuestionAnsweringModelOutput):
|
45 |
+
attention_mask: Optional[torch.FloatTensor] = None
|
46 |
+
skim_mask: Optional[torch.FloatTensor] = None
|
47 |
+
skim_loss: Optional[torch.FloatTensor] = None
|
48 |
+
classification_loss: Optional[torch.FloatTensor] = None
|
49 |
+
tokens_remained: Optional[torch.FloatTensor] = None
|
50 |
+
layer_tokens_remained: Optional[Tuple[torch.FloatTensor]] = None
|
51 |
+
|
52 |
+
@dataclass
|
53 |
+
class MaskedLMOutputSkim(MaskedLMOutput):
|
54 |
+
attention_mask: Optional[torch.FloatTensor] = None
|
55 |
+
skim_mask: Optional[torch.FloatTensor] = None
|
56 |
+
skim_loss: Optional[torch.FloatTensor] = None
|
57 |
+
classification_loss: Optional[torch.FloatTensor] = None
|
58 |
+
tokens_remained: Optional[torch.FloatTensor] = None
|
59 |
+
layer_tokens_remained: Optional[Tuple[torch.FloatTensor]] = None
|
60 |
+
|
61 |
+
def masked_softmax(vec, mask, dim=1, eps=1e-6):
|
62 |
+
mask = mask[:,None,None,:]
|
63 |
+
exps = torch.exp(vec)
|
64 |
+
masked_exps = exps * mask.float() + eps
|
65 |
+
masked_sums = masked_exps.sum(dim, keepdim=True)
|
66 |
+
return (masked_exps/masked_sums)
|
67 |
+
|
68 |
+
def convert_softmax_mask_to_digit(skim_mask):
|
69 |
+
# skim_mask [batch, from, to, seq_len]
|
70 |
+
return (skim_mask == 0).to(dtype=torch.int64).unsqueeze(1).unsqueeze(1)
|
71 |
+
|
72 |
+
def trunc_with_mask_batched(input, mask, dim):
|
73 |
+
"""
|
74 |
+
trunc a batched input at dim
|
75 |
+
e.g. hidden_states ([batch, seq_len, hidden_size])
|
76 |
+
attention_mask ([batch, layer, head, seq_len])
|
77 |
+
mask: [batch, seq_len]
|
78 |
+
"""
|
79 |
+
assert input.shape[dim]==mask.shape[1]
|
80 |
+
|
81 |
+
if dim != 1:
|
82 |
+
input = input.transpose(1, dim)
|
83 |
+
|
84 |
+
transpose_shape = list(input.shape)
|
85 |
+
transpose_shape[1] = -1
|
86 |
+
|
87 |
+
trunc_input = input[mask].view(transpose_shape)
|
88 |
+
|
89 |
+
if dim != 1:
|
90 |
+
trunc_input = trunc_input.transpose(1, dim)
|
91 |
+
|
92 |
+
return trunc_input
|
utils/extend_auto_mapping.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def extend_lazy_auto_mapping(mapping, key, config_value, value):
|
2 |
+
prev_config_mapping = mapping._config_mapping
|
3 |
+
prev_model_mapping = mapping._model_mapping
|
4 |
+
|
5 |
+
prev_config_mapping[key] = config_value
|
6 |
+
prev_model_mapping[key] = value
|
7 |
+
|
8 |
+
def test_extending():
|
9 |
+
import transformers
|
10 |
+
extend_lazy_auto_mapping(transformers.models.auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, 'test', transformers.models.bert.configuration_bert, transformers.models.bert.BertForSequenceClassification)
|
11 |
+
|
12 |
+
if __name__ == "__main__":
|
13 |
+
test_extending()
|
utils/utils_qa.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Team All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Post-processing utilities for question answering.
|
17 |
+
"""
|
18 |
+
import collections
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
from typing import Optional, Tuple
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
from tqdm.auto import tqdm
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
def postprocess_qa_predictions(
|
32 |
+
examples,
|
33 |
+
features,
|
34 |
+
predictions: Tuple[np.ndarray, np.ndarray],
|
35 |
+
version_2_with_negative: bool = False,
|
36 |
+
n_best_size: int = 20,
|
37 |
+
max_answer_length: int = 30,
|
38 |
+
null_score_diff_threshold: float = 0.0,
|
39 |
+
output_dir: Optional[str] = None,
|
40 |
+
prefix: Optional[str] = None,
|
41 |
+
log_level: Optional[int] = logging.WARNING,
|
42 |
+
):
|
43 |
+
"""
|
44 |
+
Post-processes the predictions of a question-answering model to convert them to answers that are substrings of the
|
45 |
+
original contexts. This is the base postprocessing functions for models that only return start and end logits.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
examples: The non-preprocessed dataset (see the main script for more information).
|
49 |
+
features: The processed dataset (see the main script for more information).
|
50 |
+
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
|
51 |
+
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
|
52 |
+
first dimension must match the number of elements of :obj:`features`.
|
53 |
+
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
54 |
+
Whether or not the underlying dataset contains examples with no answers.
|
55 |
+
n_best_size (:obj:`int`, `optional`, defaults to 20):
|
56 |
+
The total number of n-best predictions to generate when looking for an answer.
|
57 |
+
max_answer_length (:obj:`int`, `optional`, defaults to 30):
|
58 |
+
The maximum length of an answer that can be generated. This is needed because the start and end predictions
|
59 |
+
are not conditioned on one another.
|
60 |
+
null_score_diff_threshold (:obj:`float`, `optional`, defaults to 0):
|
61 |
+
The threshold used to select the null answer: if the best answer has a score that is less than the score of
|
62 |
+
the null answer minus this threshold, the null answer is selected for this example (note that the score of
|
63 |
+
the null answer for an example giving several features is the minimum of the scores for the null answer on
|
64 |
+
each feature: all features must be aligned on the fact they `want` to predict a null answer).
|
65 |
+
|
66 |
+
Only useful when :obj:`version_2_with_negative` is :obj:`True`.
|
67 |
+
output_dir (:obj:`str`, `optional`):
|
68 |
+
If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
|
69 |
+
:obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
|
70 |
+
answers, are saved in `output_dir`.
|
71 |
+
prefix (:obj:`str`, `optional`):
|
72 |
+
If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
|
73 |
+
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
|
74 |
+
``logging`` log level (e.g., ``logging.WARNING``)
|
75 |
+
"""
|
76 |
+
assert len(predictions) == 2, "`predictions` should be a tuple with two elements (start_logits, end_logits)."
|
77 |
+
all_start_logits, all_end_logits = predictions
|
78 |
+
|
79 |
+
assert len(predictions[0]) == len(features), f"Got {len(predictions[0])} predictions and {len(features)} features."
|
80 |
+
|
81 |
+
# Build a map example to its corresponding features.
|
82 |
+
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
|
83 |
+
features_per_example = collections.defaultdict(list)
|
84 |
+
for i, feature in enumerate(features):
|
85 |
+
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
|
86 |
+
|
87 |
+
# The dictionaries we have to fill.
|
88 |
+
all_predictions = collections.OrderedDict()
|
89 |
+
all_nbest_json = collections.OrderedDict()
|
90 |
+
if version_2_with_negative:
|
91 |
+
scores_diff_json = collections.OrderedDict()
|
92 |
+
|
93 |
+
# Logging.
|
94 |
+
logger.setLevel(log_level)
|
95 |
+
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
|
96 |
+
|
97 |
+
# Let's loop over all the examples!
|
98 |
+
for example_index, example in enumerate(tqdm(examples)):
|
99 |
+
# Those are the indices of the features associated to the current example.
|
100 |
+
feature_indices = features_per_example[example_index]
|
101 |
+
|
102 |
+
min_null_prediction = None
|
103 |
+
prelim_predictions = []
|
104 |
+
|
105 |
+
# Looping through all the features associated to the current example.
|
106 |
+
for feature_index in feature_indices:
|
107 |
+
# We grab the predictions of the model for this feature.
|
108 |
+
start_logits = all_start_logits[feature_index]
|
109 |
+
end_logits = all_end_logits[feature_index]
|
110 |
+
# This is what will allow us to map some the positions in our logits to span of texts in the original
|
111 |
+
# context.
|
112 |
+
offset_mapping = features[feature_index]["offset_mapping"]
|
113 |
+
# Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
|
114 |
+
# available in the current feature.
|
115 |
+
token_is_max_context = features[feature_index].get("token_is_max_context", None)
|
116 |
+
|
117 |
+
# Update minimum null prediction.
|
118 |
+
feature_null_score = start_logits[0] + end_logits[0]
|
119 |
+
if min_null_prediction is None or min_null_prediction["score"] > feature_null_score:
|
120 |
+
min_null_prediction = {
|
121 |
+
"offsets": (0, 0),
|
122 |
+
"score": feature_null_score,
|
123 |
+
"start_logit": start_logits[0],
|
124 |
+
"end_logit": end_logits[0],
|
125 |
+
}
|
126 |
+
|
127 |
+
# Go through all possibilities for the `n_best_size` greater start and end logits.
|
128 |
+
start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
|
129 |
+
end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
|
130 |
+
for start_index in start_indexes:
|
131 |
+
for end_index in end_indexes:
|
132 |
+
# Don't consider out-of-scope answers, either because the indices are out of bounds or correspond
|
133 |
+
# to part of the input_ids that are not in the context.
|
134 |
+
if (
|
135 |
+
start_index >= len(offset_mapping)
|
136 |
+
or end_index >= len(offset_mapping)
|
137 |
+
or offset_mapping[start_index] is None
|
138 |
+
or offset_mapping[end_index] is None
|
139 |
+
):
|
140 |
+
continue
|
141 |
+
# Don't consider answers with a length that is either < 0 or > max_answer_length.
|
142 |
+
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
|
143 |
+
continue
|
144 |
+
# Don't consider answer that don't have the maximum context available (if such information is
|
145 |
+
# provided).
|
146 |
+
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
|
147 |
+
continue
|
148 |
+
prelim_predictions.append(
|
149 |
+
{
|
150 |
+
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
|
151 |
+
"score": start_logits[start_index] + end_logits[end_index],
|
152 |
+
"start_logit": start_logits[start_index],
|
153 |
+
"end_logit": end_logits[end_index],
|
154 |
+
}
|
155 |
+
)
|
156 |
+
if version_2_with_negative:
|
157 |
+
# Add the minimum null prediction
|
158 |
+
prelim_predictions.append(min_null_prediction)
|
159 |
+
null_score = min_null_prediction["score"]
|
160 |
+
|
161 |
+
# Only keep the best `n_best_size` predictions.
|
162 |
+
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
|
163 |
+
|
164 |
+
# Add back the minimum null prediction if it was removed because of its low score.
|
165 |
+
if version_2_with_negative and not any(p["offsets"] == (0, 0) for p in predictions):
|
166 |
+
predictions.append(min_null_prediction)
|
167 |
+
|
168 |
+
# Use the offsets to gather the answer text in the original context.
|
169 |
+
context = example["context"]
|
170 |
+
for pred in predictions:
|
171 |
+
offsets = pred.pop("offsets")
|
172 |
+
pred["text"] = context[offsets[0] : offsets[1]]
|
173 |
+
|
174 |
+
# In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
|
175 |
+
# failure.
|
176 |
+
if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""):
|
177 |
+
predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0})
|
178 |
+
|
179 |
+
# Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
|
180 |
+
# the LogSumExp trick).
|
181 |
+
scores = np.array([pred.pop("score") for pred in predictions])
|
182 |
+
exp_scores = np.exp(scores - np.max(scores))
|
183 |
+
probs = exp_scores / exp_scores.sum()
|
184 |
+
|
185 |
+
# Include the probabilities in our predictions.
|
186 |
+
for prob, pred in zip(probs, predictions):
|
187 |
+
pred["probability"] = prob
|
188 |
+
|
189 |
+
# Pick the best prediction. If the null answer is not possible, this is easy.
|
190 |
+
if not version_2_with_negative:
|
191 |
+
all_predictions[example["id"]] = predictions[0]["text"]
|
192 |
+
else:
|
193 |
+
# Otherwise we first need to find the best non-empty prediction.
|
194 |
+
i = 0
|
195 |
+
while predictions[i]["text"] == "":
|
196 |
+
i += 1
|
197 |
+
best_non_null_pred = predictions[i]
|
198 |
+
|
199 |
+
# Then we compare to the null prediction using the threshold.
|
200 |
+
score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"]
|
201 |
+
scores_diff_json[example["id"]] = float(score_diff) # To be JSON-serializable.
|
202 |
+
if score_diff > null_score_diff_threshold:
|
203 |
+
all_predictions[example["id"]] = ""
|
204 |
+
else:
|
205 |
+
all_predictions[example["id"]] = best_non_null_pred["text"]
|
206 |
+
|
207 |
+
# Make `predictions` JSON-serializable by casting np.float back to float.
|
208 |
+
all_nbest_json[example["id"]] = [
|
209 |
+
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
|
210 |
+
for pred in predictions
|
211 |
+
]
|
212 |
+
|
213 |
+
# If we have an output_dir, let's save all those dicts.
|
214 |
+
if output_dir is not None:
|
215 |
+
assert os.path.isdir(output_dir), f"{output_dir} is not a directory."
|
216 |
+
|
217 |
+
prediction_file = os.path.join(
|
218 |
+
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
|
219 |
+
)
|
220 |
+
nbest_file = os.path.join(
|
221 |
+
output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
|
222 |
+
)
|
223 |
+
if version_2_with_negative:
|
224 |
+
null_odds_file = os.path.join(
|
225 |
+
output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
|
226 |
+
)
|
227 |
+
|
228 |
+
logger.info(f"Saving predictions to {prediction_file}.")
|
229 |
+
with open(prediction_file, "w") as writer:
|
230 |
+
writer.write(json.dumps(all_predictions, indent=4) + "\n")
|
231 |
+
logger.info(f"Saving nbest_preds to {nbest_file}.")
|
232 |
+
with open(nbest_file, "w") as writer:
|
233 |
+
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
|
234 |
+
if version_2_with_negative:
|
235 |
+
logger.info(f"Saving null_odds to {null_odds_file}.")
|
236 |
+
with open(null_odds_file, "w") as writer:
|
237 |
+
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
|
238 |
+
|
239 |
+
return all_predictions
|
240 |
+
|
241 |
+
|
242 |
+
def postprocess_qa_predictions_with_beam_search(
|
243 |
+
examples,
|
244 |
+
features,
|
245 |
+
predictions: Tuple[np.ndarray, np.ndarray],
|
246 |
+
version_2_with_negative: bool = False,
|
247 |
+
n_best_size: int = 20,
|
248 |
+
max_answer_length: int = 30,
|
249 |
+
start_n_top: int = 5,
|
250 |
+
end_n_top: int = 5,
|
251 |
+
output_dir: Optional[str] = None,
|
252 |
+
prefix: Optional[str] = None,
|
253 |
+
log_level: Optional[int] = logging.WARNING,
|
254 |
+
):
|
255 |
+
"""
|
256 |
+
Post-processes the predictions of a question-answering model with beam search to convert them to answers that are substrings of the
|
257 |
+
original contexts. This is the postprocessing functions for models that return start and end logits, indices, as well as
|
258 |
+
cls token predictions.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
examples: The non-preprocessed dataset (see the main script for more information).
|
262 |
+
features: The processed dataset (see the main script for more information).
|
263 |
+
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
|
264 |
+
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
|
265 |
+
first dimension must match the number of elements of :obj:`features`.
|
266 |
+
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
267 |
+
Whether or not the underlying dataset contains examples with no answers.
|
268 |
+
n_best_size (:obj:`int`, `optional`, defaults to 20):
|
269 |
+
The total number of n-best predictions to generate when looking for an answer.
|
270 |
+
max_answer_length (:obj:`int`, `optional`, defaults to 30):
|
271 |
+
The maximum length of an answer that can be generated. This is needed because the start and end predictions
|
272 |
+
are not conditioned on one another.
|
273 |
+
start_n_top (:obj:`int`, `optional`, defaults to 5):
|
274 |
+
The number of top start logits too keep when searching for the :obj:`n_best_size` predictions.
|
275 |
+
end_n_top (:obj:`int`, `optional`, defaults to 5):
|
276 |
+
The number of top end logits too keep when searching for the :obj:`n_best_size` predictions.
|
277 |
+
output_dir (:obj:`str`, `optional`):
|
278 |
+
If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
|
279 |
+
:obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
|
280 |
+
answers, are saved in `output_dir`.
|
281 |
+
prefix (:obj:`str`, `optional`):
|
282 |
+
If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
|
283 |
+
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
|
284 |
+
``logging`` log level (e.g., ``logging.WARNING``)
|
285 |
+
"""
|
286 |
+
assert len(predictions) == 5, "`predictions` should be a tuple with five elements."
|
287 |
+
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions
|
288 |
+
|
289 |
+
assert len(predictions[0]) == len(
|
290 |
+
features
|
291 |
+
), f"Got {len(predictions[0])} predicitions and {len(features)} features."
|
292 |
+
|
293 |
+
# Build a map example to its corresponding features.
|
294 |
+
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
|
295 |
+
features_per_example = collections.defaultdict(list)
|
296 |
+
for i, feature in enumerate(features):
|
297 |
+
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
|
298 |
+
|
299 |
+
# The dictionaries we have to fill.
|
300 |
+
all_predictions = collections.OrderedDict()
|
301 |
+
all_nbest_json = collections.OrderedDict()
|
302 |
+
scores_diff_json = collections.OrderedDict() if version_2_with_negative else None
|
303 |
+
|
304 |
+
# Logging.
|
305 |
+
logger.setLevel(log_level)
|
306 |
+
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
|
307 |
+
|
308 |
+
# Let's loop over all the examples!
|
309 |
+
for example_index, example in enumerate(tqdm(examples)):
|
310 |
+
# Those are the indices of the features associated to the current example.
|
311 |
+
feature_indices = features_per_example[example_index]
|
312 |
+
|
313 |
+
min_null_score = None
|
314 |
+
prelim_predictions = []
|
315 |
+
|
316 |
+
# Looping through all the features associated to the current example.
|
317 |
+
for feature_index in feature_indices:
|
318 |
+
# We grab the predictions of the model for this feature.
|
319 |
+
start_log_prob = start_top_log_probs[feature_index]
|
320 |
+
start_indexes = start_top_index[feature_index]
|
321 |
+
end_log_prob = end_top_log_probs[feature_index]
|
322 |
+
end_indexes = end_top_index[feature_index]
|
323 |
+
feature_null_score = cls_logits[feature_index]
|
324 |
+
# This is what will allow us to map some the positions in our logits to span of texts in the original
|
325 |
+
# context.
|
326 |
+
offset_mapping = features[feature_index]["offset_mapping"]
|
327 |
+
# Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
|
328 |
+
# available in the current feature.
|
329 |
+
token_is_max_context = features[feature_index].get("token_is_max_context", None)
|
330 |
+
|
331 |
+
# Update minimum null prediction
|
332 |
+
if min_null_score is None or feature_null_score < min_null_score:
|
333 |
+
min_null_score = feature_null_score
|
334 |
+
|
335 |
+
# Go through all possibilities for the `n_start_top`/`n_end_top` greater start and end logits.
|
336 |
+
for i in range(start_n_top):
|
337 |
+
for j in range(end_n_top):
|
338 |
+
start_index = int(start_indexes[i])
|
339 |
+
j_index = i * end_n_top + j
|
340 |
+
end_index = int(end_indexes[j_index])
|
341 |
+
# Don't consider out-of-scope answers (last part of the test should be unnecessary because of the
|
342 |
+
# p_mask but let's not take any risk)
|
343 |
+
if (
|
344 |
+
start_index >= len(offset_mapping)
|
345 |
+
or end_index >= len(offset_mapping)
|
346 |
+
or offset_mapping[start_index] is None
|
347 |
+
or offset_mapping[end_index] is None
|
348 |
+
):
|
349 |
+
continue
|
350 |
+
# Don't consider answers with a length negative or > max_answer_length.
|
351 |
+
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
|
352 |
+
continue
|
353 |
+
# Don't consider answer that don't have the maximum context available (if such information is
|
354 |
+
# provided).
|
355 |
+
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
|
356 |
+
continue
|
357 |
+
prelim_predictions.append(
|
358 |
+
{
|
359 |
+
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
|
360 |
+
"score": start_log_prob[i] + end_log_prob[j_index],
|
361 |
+
"start_log_prob": start_log_prob[i],
|
362 |
+
"end_log_prob": end_log_prob[j_index],
|
363 |
+
}
|
364 |
+
)
|
365 |
+
|
366 |
+
# Only keep the best `n_best_size` predictions.
|
367 |
+
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
|
368 |
+
|
369 |
+
# Use the offsets to gather the answer text in the original context.
|
370 |
+
context = example["context"]
|
371 |
+
for pred in predictions:
|
372 |
+
offsets = pred.pop("offsets")
|
373 |
+
pred["text"] = context[offsets[0] : offsets[1]]
|
374 |
+
|
375 |
+
# In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
|
376 |
+
# failure.
|
377 |
+
if len(predictions) == 0:
|
378 |
+
predictions.insert(0, {"text": "", "start_logit": -1e-6, "end_logit": -1e-6, "score": -2e-6})
|
379 |
+
|
380 |
+
# Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
|
381 |
+
# the LogSumExp trick).
|
382 |
+
scores = np.array([pred.pop("score") for pred in predictions])
|
383 |
+
exp_scores = np.exp(scores - np.max(scores))
|
384 |
+
probs = exp_scores / exp_scores.sum()
|
385 |
+
|
386 |
+
# Include the probabilities in our predictions.
|
387 |
+
for prob, pred in zip(probs, predictions):
|
388 |
+
pred["probability"] = prob
|
389 |
+
|
390 |
+
# Pick the best prediction and set the probability for the null answer.
|
391 |
+
all_predictions[example["id"]] = predictions[0]["text"]
|
392 |
+
if version_2_with_negative:
|
393 |
+
scores_diff_json[example["id"]] = float(min_null_score)
|
394 |
+
|
395 |
+
# Make `predictions` JSON-serializable by casting np.float back to float.
|
396 |
+
all_nbest_json[example["id"]] = [
|
397 |
+
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
|
398 |
+
for pred in predictions
|
399 |
+
]
|
400 |
+
|
401 |
+
# If we have an output_dir, let's save all those dicts.
|
402 |
+
if output_dir is not None:
|
403 |
+
assert os.path.isdir(output_dir), f"{output_dir} is not a directory."
|
404 |
+
|
405 |
+
prediction_file = os.path.join(
|
406 |
+
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
|
407 |
+
)
|
408 |
+
nbest_file = os.path.join(
|
409 |
+
output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
|
410 |
+
)
|
411 |
+
if version_2_with_negative:
|
412 |
+
null_odds_file = os.path.join(
|
413 |
+
output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
|
414 |
+
)
|
415 |
+
|
416 |
+
logger.info(f"Saving predictions to {prediction_file}.")
|
417 |
+
with open(prediction_file, "w") as writer:
|
418 |
+
writer.write(json.dumps(all_predictions, indent=4) + "\n")
|
419 |
+
logger.info(f"Saving nbest_preds to {nbest_file}.")
|
420 |
+
with open(nbest_file, "w") as writer:
|
421 |
+
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
|
422 |
+
if version_2_with_negative:
|
423 |
+
logger.info(f"Saving null_odds to {null_odds_file}.")
|
424 |
+
with open(null_odds_file, "w") as writer:
|
425 |
+
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
|
426 |
+
|
427 |
+
return all_predictions, scores_diff_json
|