adamelliotfields commited on
Commit
c348e53
·
verified ·
1 Parent(s): 579e8d0
Files changed (6) hide show
  1. README.md +3 -1
  2. app.py +12 -6
  3. cli.py +2 -0
  4. lib/inference.py +2 -0
  5. lib/loader.py +29 -5
  6. usage.md +10 -6
README.md CHANGED
@@ -52,7 +52,9 @@ Gradio app for Stable Diffusion 1.5 including:
52
  * multiple samplers with Karras schedule
53
  * Compel prompting
54
  * 100+ styles from sdxl_prompt_styler
55
- * DeepCache and ToMe
 
 
56
  * optional TAESD
57
 
58
  ## Usage
 
52
  * multiple samplers with Karras schedule
53
  * Compel prompting
54
  * 100+ styles from sdxl_prompt_styler
55
+ * FreeU and Clip Skip for quality
56
+ * DeepCache and ToMe for speed
57
+ * Real-ESRGAN upscaling
58
  * optional TAESD
59
 
60
  ## Usage
app.py CHANGED
@@ -171,9 +171,19 @@ with gr.Blocks(
171
  label="Karras σ",
172
  value=True,
173
  )
 
 
 
 
 
 
 
 
 
 
174
  increment_seed = gr.Checkbox(
175
  elem_classes=["checkbox"],
176
- label="Autoincrement",
177
  value=True,
178
  )
179
 
@@ -207,11 +217,6 @@ with gr.Blocks(
207
  label="Tiny VAE",
208
  value=False,
209
  )
210
- use_clip_skip = gr.Checkbox(
211
- elem_classes=["checkbox"],
212
- label="Clip skip",
213
- value=False,
214
- )
215
  truncate_prompts = gr.Checkbox(
216
  elem_classes=["checkbox"],
217
  label="Truncate prompts",
@@ -296,6 +301,7 @@ with gr.Blocks(
296
  num_images,
297
  use_karras,
298
  use_taesd,
 
299
  use_clip_skip,
300
  truncate_prompts,
301
  increment_seed,
 
171
  label="Karras σ",
172
  value=True,
173
  )
174
+ use_freeu = gr.Checkbox(
175
+ elem_classes=["checkbox"],
176
+ label="FreeU",
177
+ value=False,
178
+ )
179
+ use_clip_skip = gr.Checkbox(
180
+ elem_classes=["checkbox"],
181
+ label="Clip skip",
182
+ value=False,
183
+ )
184
  increment_seed = gr.Checkbox(
185
  elem_classes=["checkbox"],
186
+ label="Autoincrement seed",
187
  value=True,
188
  )
189
 
 
217
  label="Tiny VAE",
218
  value=False,
219
  )
 
 
 
 
 
220
  truncate_prompts = gr.Checkbox(
221
  elem_classes=["checkbox"],
222
  label="Truncate prompts",
 
301
  num_images,
302
  use_karras,
303
  use_taesd,
304
+ use_freeu,
305
  use_clip_skip,
306
  truncate_prompts,
307
  increment_seed,
cli.py CHANGED
@@ -34,6 +34,7 @@ def main():
34
  parser.add_argument("--clip-skip", action="store_true")
35
  parser.add_argument("--truncate", action="store_true")
36
  parser.add_argument("--karras", action="store_true")
 
37
  parser.add_argument("--no-increment", action="store_false")
38
  # fmt: on
39
 
@@ -52,6 +53,7 @@ def main():
52
  args.images,
53
  args.karras,
54
  args.taesd,
 
55
  args.clip_skip,
56
  args.truncate,
57
  args.no_increment,
 
34
  parser.add_argument("--clip-skip", action="store_true")
35
  parser.add_argument("--truncate", action="store_true")
36
  parser.add_argument("--karras", action="store_true")
37
+ parser.add_argument("--freeu", action="store_true")
38
  parser.add_argument("--no-increment", action="store_false")
39
  # fmt: on
40
 
 
53
  args.images,
54
  args.karras,
55
  args.taesd,
56
+ args.freeu,
57
  args.clip_skip,
58
  args.truncate,
59
  args.no_increment,
lib/inference.py CHANGED
@@ -86,6 +86,7 @@ def generate(
86
  num_images=1,
87
  karras=False,
88
  taesd=False,
 
89
  clip_skip=False,
90
  truncate_prompts=False,
91
  increment_seed=True,
@@ -124,6 +125,7 @@ def generate(
124
  scheduler,
125
  karras,
126
  taesd,
 
127
  deepcache_interval,
128
  scale,
129
  DTYPE,
 
86
  num_images=1,
87
  karras=False,
88
  taesd=False,
89
+ freeu=False,
90
  clip_skip=False,
91
  truncate_prompts=False,
92
  increment_seed=True,
 
125
  scheduler,
126
  karras,
127
  taesd,
128
+ freeu,
129
  deepcache_interval,
130
  scale,
131
  DTYPE,
lib/loader.py CHANGED
@@ -64,6 +64,17 @@ class Loader:
64
  self.pipe.deepcache.set_params(cache_interval=interval)
65
  self.pipe.deepcache.enable()
66
 
 
 
 
 
 
 
 
 
 
 
 
67
  def _load_vae(self, model_name=None, taesd=False, variant=None):
68
  vae_type = type(self.pipe.vae)
69
  is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule))
@@ -93,7 +104,18 @@ class Loader:
93
  model=model,
94
  )
95
 
96
- def load(self, model, scheduler, karras, taesd, deepcache_interval, scale, dtype, device):
 
 
 
 
 
 
 
 
 
 
 
97
  model_lower = model.lower()
98
 
99
  schedulers = {
@@ -155,8 +177,9 @@ class Loader:
155
  if not same_scheduler or not same_karras:
156
  self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
157
  self._load_vae(model_lower, taesd, variant)
158
- self._load_deepcache(interval=deepcache_interval)
159
- self._load_upscaler(device=device, scale=scale)
 
160
  torch.cuda.empty_cache()
161
  return self.pipe, self.upscaler
162
  else:
@@ -173,7 +196,8 @@ class Loader:
173
  tokens=list(EMBEDDINGS.values()),
174
  )
175
  self._load_vae(model_lower, taesd, variant)
176
- self._load_deepcache(interval=deepcache_interval)
177
- self._load_upscaler(device=device, scale=scale)
 
178
  torch.cuda.empty_cache()
179
  return self.pipe, self.upscaler
 
64
  self.pipe.deepcache.set_params(cache_interval=interval)
65
  self.pipe.deepcache.enable()
66
 
67
+ def _load_freeu(self, freeu=False):
68
+ # https://github.com/huggingface/diffusers/blob/v0.30.0/src/diffusers/models/unets/unet_2d_condition.py
69
+ block = self.pipe.unet.up_blocks[0]
70
+ attrs = ["b1", "b2", "s1", "s2"]
71
+ has_freeu = all(getattr(block, attr, None) is not None for attr in attrs)
72
+ if has_freeu and not freeu:
73
+ self.pipe.disable_freeu()
74
+ elif not has_freeu and freeu:
75
+ # https://github.com/ChenyangSi/FreeU
76
+ self.pipe.enable_freeu(b1=1.5, b2=1.6, s1=0.9, s2=0.2)
77
+
78
  def _load_vae(self, model_name=None, taesd=False, variant=None):
79
  vae_type = type(self.pipe.vae)
80
  is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule))
 
104
  model=model,
105
  )
106
 
107
+ def load(
108
+ self,
109
+ model,
110
+ scheduler,
111
+ karras,
112
+ taesd,
113
+ freeu,
114
+ deepcache_interval,
115
+ scale,
116
+ dtype,
117
+ device,
118
+ ):
119
  model_lower = model.lower()
120
 
121
  schedulers = {
 
177
  if not same_scheduler or not same_karras:
178
  self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
179
  self._load_vae(model_lower, taesd, variant)
180
+ self._load_freeu(freeu)
181
+ self._load_deepcache(deepcache_interval)
182
+ self._load_upscaler(device, scale)
183
  torch.cuda.empty_cache()
184
  return self.pipe, self.upscaler
185
  else:
 
196
  tokens=list(EMBEDDINGS.values()),
197
  )
198
  self._load_vae(model_lower, taesd, variant)
199
+ self._load_freeu(freeu)
200
+ self._load_deepcache(deepcache_interval)
201
+ self._load_upscaler(device, scale)
202
  torch.cuda.empty_cache()
203
  return self.pipe, self.upscaler
usage.md CHANGED
@@ -32,6 +32,14 @@ Arrays allow you to generate different images from a single prompt. For example,
32
 
33
  Styles are prompt templates from twri's [sdxl_prompt_styler](https://github.com/twri/sdxl_prompt_styler) Comfy node. Start with a subject like "cat", pick a style, and iterate from there.
34
 
 
 
 
 
 
 
 
 
35
  ### Scale
36
 
37
  Rescale up to 4x using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN).
@@ -63,7 +71,7 @@ Optionally, the [Karras](https://arxiv.org/abs/2206.00364) noise schedule can be
63
 
64
  #### DeepCache
65
 
66
- [DeepCache](https://github.com/horseee/DeepCache) (Ma et al. 2023) caches lower UNet layers and reuses them every `Interval` steps:
67
  * `1`: no caching
68
  * `2`: more quality (default)
69
  * `3`: balanced
@@ -71,16 +79,12 @@ Optionally, the [Karras](https://arxiv.org/abs/2206.00364) noise schedule can be
71
 
72
  #### ToMe
73
 
74
- [Token merging](https://arxiv.org/abs/2303.17604) (Bolya & Hoffman 2023) reduces the number of tokens processed by the model. Set `Ratio` to the desired reduction factor. ToMe's impact is more noticeable on larger images.
75
 
76
  #### Tiny VAE
77
 
78
  Enable [madebyollin/taesd](https://github.com/madebyollin/taesd) for almost instant latent decoding with a minor loss in detail. Useful for development.
79
 
80
- #### Clip Skip
81
-
82
- When enabled, the last CLIP layer is skipped. This _can_ improve image quality with anime models.
83
-
84
  #### Prompt Truncation
85
 
86
  When enabled, prompts will be truncated to CLIP's limit of 77 tokens. By default this is _disabled_, so Compel will chunk prompts into segments rather than cutting them off.
 
32
 
33
  Styles are prompt templates from twri's [sdxl_prompt_styler](https://github.com/twri/sdxl_prompt_styler) Comfy node. Start with a subject like "cat", pick a style, and iterate from there.
34
 
35
+ #### FreeU
36
+
37
+ [FreeU](https://github.com/ChenyangSi/FreeU) (Si et al. 2023) re-weights the contributions sourced from the U-Net’s skip connections and backbone feature maps to potentially improve image quality.
38
+
39
+ #### Clip Skip
40
+
41
+ When enabled, the last CLIP layer is skipped. This _can_ improve image quality with anime models.
42
+
43
  ### Scale
44
 
45
  Rescale up to 4x using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN).
 
71
 
72
  #### DeepCache
73
 
74
+ [DeepCache](https://github.com/horseee/DeepCache) (Ma et al. 2023) caches lower U-Net layers and reuses them every `Interval` steps:
75
  * `1`: no caching
76
  * `2`: more quality (default)
77
  * `3`: balanced
 
79
 
80
  #### ToMe
81
 
82
+ [Token merging](https://github.com/dbolya/tomesd) (Bolya & Hoffman 2023) reduces the number of tokens processed by the model. Set `Ratio` to the desired reduction factor. ToMe's impact is more noticeable on larger images.
83
 
84
  #### Tiny VAE
85
 
86
  Enable [madebyollin/taesd](https://github.com/madebyollin/taesd) for almost instant latent decoding with a minor loss in detail. Useful for development.
87
 
 
 
 
 
88
  #### Prompt Truncation
89
 
90
  When enabled, prompts will be truncated to CLIP's limit of 77 tokens. By default this is _disabled_, so Compel will chunk prompts into segments rather than cutting them off.