Spaces:
Running
on
Zero
Running
on
Zero
adamelliotfields
commited on
Simplify textual inversion embeddings
Browse files- DOCS.md +5 -11
- app.py +7 -11
- embeddings/cyberrealistic_negative.pt +0 -3
- embeddings/unrealistic_dream.pt +0 -3
- lib/config.py +1 -6
- lib/inference.py +12 -9
DOCS.md
CHANGED
@@ -41,16 +41,6 @@ Apply up to 2 LoRA (low-rank adaptation) adapters with adjustable strength:
|
|
41 |
|
42 |
> NB: The trigger words are automatically appended to the positive prompt for you.
|
43 |
|
44 |
-
### Embeddings
|
45 |
-
|
46 |
-
Select one or more [textual inversion](https://huggingface.co/docs/diffusers/en/using-diffusers/textual_inversion_inference) embeddings:
|
47 |
-
|
48 |
-
* [`fast_negative`](https://civitai.com/models/71961?modelVersionId=94057): all-purpose (default, **recommended**)
|
49 |
-
* [`cyberrealistic_negative`](https://civitai.com/models/77976?modelVersionId=82745): realistic add-on (for CyberRealistic)
|
50 |
-
* [`unrealistic_dream`](https://civitai.com/models/72437?modelVersionId=77173): realistic add-on (for RealisticVision)
|
51 |
-
|
52 |
-
> NB: The trigger token is automatically appended to the negative prompt for you.
|
53 |
-
|
54 |
### Styles
|
55 |
|
56 |
[Styles](https://huggingface.co/spaces/adamelliotfields/diffusion/blob/main/data/styles.json) are prompt templates that wrap your positive and negative prompts. They were originally derived from the [twri/sdxl_prompt_styler](https://github.com/twri/sdxl_prompt_styler) Comfy node, but have since been entirely rewritten.
|
@@ -83,7 +73,7 @@ Initial image strength (known as _denoising strength_) is essentially how much t
|
|
83 |
|
84 |
#### ControlNet
|
85 |
|
86 |
-
In [ControlNet](https://github.com/lllyasviel/ControlNet), the input image is used to get a feature map from an _annotator_. These are computer vision models used for tasks like edge detection and pose estimation. ControlNet models are trained to understand these feature maps. Read the [
|
87 |
|
88 |
Currently, the only annotator available is [Canny](https://huggingface.co/lllyasviel/control_v11p_sd15_canny) (edge detection).
|
89 |
|
@@ -95,6 +85,10 @@ For capturing faces, enable `IP-Adapter Face` to use the full-face model. You sh
|
|
95 |
|
96 |
### Advanced
|
97 |
|
|
|
|
|
|
|
|
|
98 |
#### DeepCache
|
99 |
|
100 |
[DeepCache](https://github.com/horseee/DeepCache) caches lower UNet layers and reuses them every `Interval` steps. Trade quality for speed:
|
|
|
41 |
|
42 |
> NB: The trigger words are automatically appended to the positive prompt for you.
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
### Styles
|
45 |
|
46 |
[Styles](https://huggingface.co/spaces/adamelliotfields/diffusion/blob/main/data/styles.json) are prompt templates that wrap your positive and negative prompts. They were originally derived from the [twri/sdxl_prompt_styler](https://github.com/twri/sdxl_prompt_styler) Comfy node, but have since been entirely rewritten.
|
|
|
73 |
|
74 |
#### ControlNet
|
75 |
|
76 |
+
In [ControlNet](https://github.com/lllyasviel/ControlNet), the input image is used to get a feature map from an _annotator_. These are computer vision models used for tasks like edge detection and pose estimation. ControlNet models are trained to understand these feature maps. Read the [docs](https://huggingface.co/docs/diffusers/using-diffusers/controlnet) to learn more.
|
77 |
|
78 |
Currently, the only annotator available is [Canny](https://huggingface.co/lllyasviel/control_v11p_sd15_canny) (edge detection).
|
79 |
|
|
|
85 |
|
86 |
### Advanced
|
87 |
|
88 |
+
#### Textual Inversion
|
89 |
+
|
90 |
+
Enable `Use negative TI` to append [`fast_negative`](https://civitai.com/models/71961?modelVersionId=94057) to your negative prompt. Read [An Image is Worth One Word](https://huggingface.co/papers/2208.01618) to learn more.
|
91 |
+
|
92 |
#### DeepCache
|
93 |
|
94 |
[DeepCache](https://github.com/horseee/DeepCache) caches lower UNet layers and reuses them every `Interval` steps. Trade quality for speed:
|
app.py
CHANGED
@@ -215,15 +215,6 @@ with gr.Blocks(
|
|
215 |
label="Scheduler",
|
216 |
filterable=False,
|
217 |
)
|
218 |
-
with gr.Row():
|
219 |
-
embeddings = gr.Dropdown(
|
220 |
-
elem_id="embeddings",
|
221 |
-
label="Embeddings",
|
222 |
-
choices=[(f"<{e}>", e) for e in Config.EMBEDDINGS],
|
223 |
-
multiselect=True,
|
224 |
-
value=[Config.EMBEDDING],
|
225 |
-
min_width=240,
|
226 |
-
)
|
227 |
with gr.Row():
|
228 |
with gr.Group(elem_classes=["gap-0"]):
|
229 |
lora_1 = gr.Dropdown(
|
@@ -315,7 +306,7 @@ with gr.Blocks(
|
|
315 |
with gr.Row():
|
316 |
file_format = gr.Dropdown(
|
317 |
choices=["png", "jpeg", "webp"],
|
318 |
-
label="
|
319 |
filterable=False,
|
320 |
value="png",
|
321 |
)
|
@@ -343,6 +334,11 @@ with gr.Blocks(
|
|
343 |
label="Karras σ",
|
344 |
value=True,
|
345 |
)
|
|
|
|
|
|
|
|
|
|
|
346 |
use_taesd = gr.Checkbox(
|
347 |
elem_classes=["checkbox"],
|
348 |
label="Tiny VAE",
|
@@ -487,7 +483,6 @@ with gr.Blocks(
|
|
487 |
lora_1_weight,
|
488 |
lora_2,
|
489 |
lora_2_weight,
|
490 |
-
embeddings,
|
491 |
style,
|
492 |
seed,
|
493 |
model,
|
@@ -506,6 +501,7 @@ with gr.Blocks(
|
|
506 |
use_freeu,
|
507 |
use_clip_skip,
|
508 |
use_ip_face,
|
|
|
509 |
DISABLE_IMAGE_PROMPT,
|
510 |
DISABLE_CONTROL_IMAGE_PROMPT,
|
511 |
DISABLE_IP_IMAGE_PROMPT,
|
|
|
215 |
label="Scheduler",
|
216 |
filterable=False,
|
217 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
with gr.Row():
|
219 |
with gr.Group(elem_classes=["gap-0"]):
|
220 |
lora_1 = gr.Dropdown(
|
|
|
306 |
with gr.Row():
|
307 |
file_format = gr.Dropdown(
|
308 |
choices=["png", "jpeg", "webp"],
|
309 |
+
label="Format",
|
310 |
filterable=False,
|
311 |
value="png",
|
312 |
)
|
|
|
334 |
label="Karras σ",
|
335 |
value=True,
|
336 |
)
|
337 |
+
use_negative_embedding = gr.Checkbox(
|
338 |
+
elem_classes=["checkbox"],
|
339 |
+
label="Use negative TI",
|
340 |
+
value=False,
|
341 |
+
)
|
342 |
use_taesd = gr.Checkbox(
|
343 |
elem_classes=["checkbox"],
|
344 |
label="Tiny VAE",
|
|
|
483 |
lora_1_weight,
|
484 |
lora_2,
|
485 |
lora_2_weight,
|
|
|
486 |
style,
|
487 |
seed,
|
488 |
model,
|
|
|
501 |
use_freeu,
|
502 |
use_clip_skip,
|
503 |
use_ip_face,
|
504 |
+
use_negative_embedding,
|
505 |
DISABLE_IMAGE_PROMPT,
|
506 |
DISABLE_CONTROL_IMAGE_PROMPT,
|
507 |
DISABLE_IP_IMAGE_PROMPT,
|
embeddings/cyberrealistic_negative.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:65f3ea567c04c22f92024c5b55cbeca580bc330c4290aeb647ebd86273b3ffb8
|
3 |
-
size 197662
|
|
|
|
|
|
|
|
embeddings/unrealistic_dream.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a77451e7ea075c7f72d488d2b740b3d3970c671c0ac39dd3155f3c3b129df959
|
3 |
-
size 114539
|
|
|
|
|
|
|
|
lib/config.py
CHANGED
@@ -140,12 +140,7 @@ Config = SimpleNamespace(
|
|
140 |
ANNOTATORS={
|
141 |
"canny": "lllyasviel/control_v11p_sd15_canny",
|
142 |
},
|
143 |
-
|
144 |
-
EMBEDDINGS=[
|
145 |
-
"cyberrealistic_negative",
|
146 |
-
"fast_negative",
|
147 |
-
"unrealistic_dream",
|
148 |
-
],
|
149 |
STYLE="enhance",
|
150 |
WIDTH=512,
|
151 |
HEIGHT=512,
|
|
|
140 |
ANNOTATORS={
|
141 |
"canny": "lllyasviel/control_v11p_sd15_canny",
|
142 |
},
|
143 |
+
NEGATIVE_EMBEDDING="fast_negative",
|
|
|
|
|
|
|
|
|
|
|
144 |
STYLE="enhance",
|
145 |
WIDTH=512,
|
146 |
HEIGHT=512,
|
lib/inference.py
CHANGED
@@ -70,7 +70,6 @@ def generate(
|
|
70 |
lora_1_weight=0.0,
|
71 |
lora_2=None,
|
72 |
lora_2_weight=0.0,
|
73 |
-
embeddings=[],
|
74 |
style=None,
|
75 |
seed=None,
|
76 |
model="Lykon/dreamshaper-8",
|
@@ -89,6 +88,7 @@ def generate(
|
|
89 |
freeu=False,
|
90 |
clip_skip=False,
|
91 |
ip_face=False,
|
|
|
92 |
Error=Exception,
|
93 |
Info=None,
|
94 |
progress=None,
|
@@ -193,11 +193,13 @@ def generate(
|
|
193 |
pipe.unload_lora_weights()
|
194 |
raise Error("Error setting LoRA weights")
|
195 |
|
196 |
-
#
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
199 |
try:
|
200 |
-
# wrap embeddings in angle brackets
|
201 |
pipe.load_textual_inversion(
|
202 |
pretrained_model_name_or_path=f"{embeddings_dir}/{embedding}.pt",
|
203 |
token=f"<{embedding}>",
|
@@ -219,6 +221,7 @@ def generate(
|
|
219 |
images = []
|
220 |
current_seed = seed
|
221 |
safe_progress(progress, 0, num_images, f"Generating image 0/{num_images}")
|
|
|
222 |
for i in range(num_images):
|
223 |
try:
|
224 |
generator = torch.Generator(device=pipe.device).manual_seed(current_seed)
|
@@ -228,12 +231,12 @@ def generate(
|
|
228 |
if negative_styled.startswith("(), "):
|
229 |
negative_styled = negative_styled[4:]
|
230 |
|
|
|
|
|
|
|
231 |
for lora in loras:
|
232 |
positive_styled += f", {Config.CIVIT_LORAS[lora]['trigger']}"
|
233 |
|
234 |
-
for embedding in embeddings:
|
235 |
-
negative_styled += f", <{embedding}>"
|
236 |
-
|
237 |
positive_embeds, negative_embeds = compel.pad_conditioning_tensors_to_same_length(
|
238 |
[compel(positive_styled), compel(negative_styled)]
|
239 |
)
|
@@ -273,7 +276,7 @@ def generate(
|
|
273 |
images.append((image, str(current_seed)))
|
274 |
current_seed += 1
|
275 |
finally:
|
276 |
-
if
|
277 |
pipe.unload_textual_inversion()
|
278 |
if loras:
|
279 |
pipe.unload_lora_weights()
|
|
|
70 |
lora_1_weight=0.0,
|
71 |
lora_2=None,
|
72 |
lora_2_weight=0.0,
|
|
|
73 |
style=None,
|
74 |
seed=None,
|
75 |
model="Lykon/dreamshaper-8",
|
|
|
88 |
freeu=False,
|
89 |
clip_skip=False,
|
90 |
ip_face=False,
|
91 |
+
negative_embedding=False,
|
92 |
Error=Exception,
|
93 |
Info=None,
|
94 |
progress=None,
|
|
|
193 |
pipe.unload_lora_weights()
|
194 |
raise Error("Error setting LoRA weights")
|
195 |
|
196 |
+
# Load negative embedding if requested
|
197 |
+
if negative_embedding:
|
198 |
+
embeddings_dir = os.path.abspath(
|
199 |
+
os.path.join(os.path.dirname(__file__), "..", "embeddings")
|
200 |
+
)
|
201 |
+
embedding = Config.NEGATIVE_EMBEDDING
|
202 |
try:
|
|
|
203 |
pipe.load_textual_inversion(
|
204 |
pretrained_model_name_or_path=f"{embeddings_dir}/{embedding}.pt",
|
205 |
token=f"<{embedding}>",
|
|
|
221 |
images = []
|
222 |
current_seed = seed
|
223 |
safe_progress(progress, 0, num_images, f"Generating image 0/{num_images}")
|
224 |
+
|
225 |
for i in range(num_images):
|
226 |
try:
|
227 |
generator = torch.Generator(device=pipe.device).manual_seed(current_seed)
|
|
|
231 |
if negative_styled.startswith("(), "):
|
232 |
negative_styled = negative_styled[4:]
|
233 |
|
234 |
+
if negative_embedding:
|
235 |
+
negative_styled += f", <{Config.NEGATIVE_EMBEDDING}>"
|
236 |
+
|
237 |
for lora in loras:
|
238 |
positive_styled += f", {Config.CIVIT_LORAS[lora]['trigger']}"
|
239 |
|
|
|
|
|
|
|
240 |
positive_embeds, negative_embeds = compel.pad_conditioning_tensors_to_same_length(
|
241 |
[compel(positive_styled), compel(negative_styled)]
|
242 |
)
|
|
|
276 |
images.append((image, str(current_seed)))
|
277 |
current_seed += 1
|
278 |
finally:
|
279 |
+
if negative_embedding:
|
280 |
pipe.unload_textual_inversion()
|
281 |
if loras:
|
282 |
pipe.unload_lora_weights()
|