Spaces:
Running
on
Zero
Running
on
Zero
adamelliotfields
commited on
Performance improvements
Browse files- generate.py +71 -56
generate.py
CHANGED
@@ -19,6 +19,17 @@ from diffusers import (
|
|
19 |
)
|
20 |
from diffusers.models import AutoencoderTiny
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# some models use the deprecated CLIPFeatureExtractor class
|
23 |
# should use CLIPImageProcessor instead
|
24 |
filterwarnings("ignore", category=FutureWarning, module="transformers")
|
@@ -32,18 +43,13 @@ class Loader:
|
|
32 |
cls._instance = super(Loader, cls).__new__(cls)
|
33 |
cls._instance.cpu = torch.device("cpu")
|
34 |
cls._instance.gpu = torch.device("cuda")
|
35 |
-
cls._instance.
|
36 |
-
cls._instance.model_gpu = None
|
37 |
return cls._instance
|
38 |
|
39 |
def load(self, model, scheduler, karras):
|
40 |
-
SPACES_ZERO_GPU = (
|
41 |
-
environ.get("SPACES_ZERO_GPU", "").lower() == "true"
|
42 |
-
or environ.get("SPACES_ZERO_GPU", "") == "1"
|
43 |
-
)
|
44 |
model_lower = model.lower()
|
45 |
|
46 |
-
|
47 |
"DEIS 2M": DEISMultistepScheduler,
|
48 |
"DPM++ 2M": DPMSolverMultistepScheduler,
|
49 |
"DPM2 a": KDPM2AncestralDiscreteScheduler,
|
@@ -59,63 +65,63 @@ class Loader:
|
|
59 |
"beta_schedule": "scaled_linear",
|
60 |
"timestep_spacing": "leading",
|
61 |
"steps_offset": 1,
|
|
|
62 |
}
|
63 |
|
64 |
-
if self.model_gpu is not None:
|
65 |
-
same_model = self.model_gpu.config._name_or_path.lower() == model_lower
|
66 |
-
same_scheduler = isinstance(self.model_gpu.scheduler, scheduler_map[scheduler])
|
67 |
-
same_karras = (
|
68 |
-
not hasattr(self.model_gpu.scheduler.config, "use_karras_sigmas")
|
69 |
-
or self.model_gpu.scheduler.config.use_karras_sigmas == karras
|
70 |
-
)
|
71 |
-
if same_model and same_scheduler and same_karras:
|
72 |
-
return self.model_gpu
|
73 |
-
|
74 |
-
if karras:
|
75 |
-
scheduler_kwargs["use_karras_sigmas"] = True
|
76 |
-
|
77 |
if scheduler == "PNDM" or scheduler == "Euler a":
|
78 |
del scheduler_kwargs["use_karras_sigmas"]
|
79 |
|
80 |
-
|
81 |
-
None
|
82 |
-
if model_lower in ["sg161222/realistic_vision_v5.1_novae", "prompthero/openjourney-v4"]
|
83 |
-
else "fp16"
|
84 |
-
)
|
85 |
-
|
86 |
-
pipeline_kwargs = {
|
87 |
"pretrained_model_name_or_path": model_lower,
|
88 |
"requires_safety_checker": False,
|
89 |
"safety_checker": None,
|
90 |
-
"scheduler":
|
91 |
-
"torch_dtype":
|
92 |
-
"variant": variant,
|
93 |
"use_safetensors": True,
|
94 |
-
"vae": AutoencoderTiny.from_pretrained(
|
95 |
-
"madebyollin/taesd",
|
96 |
-
torch_dtype=torch.float16,
|
97 |
-
use_safetensors=True,
|
98 |
-
),
|
99 |
}
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
return self.
|
119 |
|
120 |
|
121 |
# prepare prompts for Compel
|
@@ -153,12 +159,16 @@ def generate(
|
|
153 |
model="lykon/dreamshaper-8",
|
154 |
scheduler="DEIS 2M",
|
155 |
aspect_ratio="1:1",
|
156 |
-
guidance_scale=7,
|
157 |
inference_steps=30,
|
158 |
karras=True,
|
159 |
num_images=1,
|
160 |
increment_seed=True,
|
|
|
161 |
):
|
|
|
|
|
|
|
162 |
# image dimensions
|
163 |
aspect_ratios = {
|
164 |
"16:9": (640, 360),
|
@@ -178,8 +188,8 @@ def generate(
|
|
178 |
tokenizer=pipe.tokenizer,
|
179 |
text_encoder=pipe.text_encoder,
|
180 |
truncate_long_prompts=False,
|
181 |
-
device=pipe.device
|
182 |
-
dtype_for_device_getter=lambda _:
|
183 |
)
|
184 |
|
185 |
neg_prompt = join_prompt(negative_prompt)
|
@@ -192,7 +202,9 @@ def generate(
|
|
192 |
images = []
|
193 |
|
194 |
for i in range(num_images):
|
195 |
-
generator = torch.Generator(device=pipe.device
|
|
|
|
|
196 |
all_positive_prompts = parse_prompt(positive_prompt)
|
197 |
prompt_index = i % len(all_positive_prompts)
|
198 |
pos_prompt = all_positive_prompts[prompt_index]
|
@@ -210,10 +222,13 @@ def generate(
|
|
210 |
guidance_scale=guidance_scale,
|
211 |
generator=generator,
|
212 |
)
|
213 |
-
|
214 |
images.append((result.images[0], str(current_seed)))
|
215 |
|
216 |
if increment_seed:
|
217 |
current_seed += 1
|
218 |
|
|
|
|
|
|
|
|
|
219 |
return images
|
|
|
19 |
)
|
20 |
from diffusers.models import AutoencoderTiny
|
21 |
|
22 |
+
ZERO_GPU = (
|
23 |
+
environ.get("SPACES_ZERO_GPU", "").lower() == "true"
|
24 |
+
or environ.get("SPACES_ZERO_GPU", "") == "1"
|
25 |
+
)
|
26 |
+
|
27 |
+
TORCH_DTYPE = (
|
28 |
+
torch.bfloat16
|
29 |
+
if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
|
30 |
+
else torch.float16
|
31 |
+
)
|
32 |
+
|
33 |
# some models use the deprecated CLIPFeatureExtractor class
|
34 |
# should use CLIPImageProcessor instead
|
35 |
filterwarnings("ignore", category=FutureWarning, module="transformers")
|
|
|
43 |
cls._instance = super(Loader, cls).__new__(cls)
|
44 |
cls._instance.cpu = torch.device("cpu")
|
45 |
cls._instance.gpu = torch.device("cuda")
|
46 |
+
cls._instance.pipe = None
|
|
|
47 |
return cls._instance
|
48 |
|
49 |
def load(self, model, scheduler, karras):
|
|
|
|
|
|
|
|
|
50 |
model_lower = model.lower()
|
51 |
|
52 |
+
schedulers = {
|
53 |
"DEIS 2M": DEISMultistepScheduler,
|
54 |
"DPM++ 2M": DPMSolverMultistepScheduler,
|
55 |
"DPM2 a": KDPM2AncestralDiscreteScheduler,
|
|
|
65 |
"beta_schedule": "scaled_linear",
|
66 |
"timestep_spacing": "leading",
|
67 |
"steps_offset": 1,
|
68 |
+
"use_karras_sigmas": karras,
|
69 |
}
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
if scheduler == "PNDM" or scheduler == "Euler a":
|
72 |
del scheduler_kwargs["use_karras_sigmas"]
|
73 |
|
74 |
+
pipe_kwargs = {
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
"pretrained_model_name_or_path": model_lower,
|
76 |
"requires_safety_checker": False,
|
77 |
"safety_checker": None,
|
78 |
+
"scheduler": schedulers[scheduler](**scheduler_kwargs),
|
79 |
+
"torch_dtype": TORCH_DTYPE,
|
|
|
80 |
"use_safetensors": True,
|
|
|
|
|
|
|
|
|
|
|
81 |
}
|
82 |
|
83 |
+
# already loaded
|
84 |
+
if self.pipe is not None:
|
85 |
+
model_name = self.pipe.config._name_or_path
|
86 |
+
same_model = model_name.lower() == model_lower
|
87 |
+
same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler])
|
88 |
+
same_karras = (
|
89 |
+
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
|
90 |
+
or self.pipe.scheduler.config.use_karras_sigmas == karras
|
91 |
+
)
|
92 |
|
93 |
+
if same_model:
|
94 |
+
if not same_scheduler:
|
95 |
+
print(f"Swapping scheduler to {scheduler}...")
|
96 |
+
elif not same_karras:
|
97 |
+
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
|
98 |
+
elif not (same_scheduler and same_karras):
|
99 |
+
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
|
100 |
+
return self.pipe
|
101 |
+
else:
|
102 |
+
print(f"Unloading {model_name.lower()}...")
|
103 |
+
self.pipe = None
|
104 |
+
torch.cuda.empty_cache()
|
105 |
+
|
106 |
+
# no fp16 available
|
107 |
+
if not ZERO_GPU and model_lower not in [
|
108 |
+
"sg161222/realistic_vision_v5.1_novae",
|
109 |
+
"prompthero/openjourney-v4",
|
110 |
+
"linaqruf/anything-v3-1",
|
111 |
+
]:
|
112 |
+
pipe_kwargs["variant"] = "fp16"
|
113 |
+
|
114 |
+
# uses special VAE
|
115 |
+
if model_lower not in ["linaqruf/anything-v3-1"]:
|
116 |
+
pipe_kwargs["vae"] = AutoencoderTiny.from_pretrained(
|
117 |
+
"madebyollin/taesd",
|
118 |
+
torch_dtype=TORCH_DTYPE,
|
119 |
+
use_safetensors=True,
|
120 |
+
)
|
121 |
|
122 |
+
print(f"Loading {model_lower}...")
|
123 |
+
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(self.gpu)
|
124 |
+
return self.pipe
|
125 |
|
126 |
|
127 |
# prepare prompts for Compel
|
|
|
159 |
model="lykon/dreamshaper-8",
|
160 |
scheduler="DEIS 2M",
|
161 |
aspect_ratio="1:1",
|
162 |
+
guidance_scale=7.5,
|
163 |
inference_steps=30,
|
164 |
karras=True,
|
165 |
num_images=1,
|
166 |
increment_seed=True,
|
167 |
+
Error=Exception,
|
168 |
):
|
169 |
+
if not torch.cuda.is_available():
|
170 |
+
raise Error("CUDA not available")
|
171 |
+
|
172 |
# image dimensions
|
173 |
aspect_ratios = {
|
174 |
"16:9": (640, 360),
|
|
|
188 |
tokenizer=pipe.tokenizer,
|
189 |
text_encoder=pipe.text_encoder,
|
190 |
truncate_long_prompts=False,
|
191 |
+
device=pipe.device,
|
192 |
+
dtype_for_device_getter=lambda _: TORCH_DTYPE,
|
193 |
)
|
194 |
|
195 |
neg_prompt = join_prompt(negative_prompt)
|
|
|
202 |
images = []
|
203 |
|
204 |
for i in range(num_images):
|
205 |
+
generator = torch.Generator(device=pipe.device).manual_seed(current_seed)
|
206 |
+
|
207 |
+
# run the prompt for this iteration
|
208 |
all_positive_prompts = parse_prompt(positive_prompt)
|
209 |
prompt_index = i % len(all_positive_prompts)
|
210 |
pos_prompt = all_positive_prompts[prompt_index]
|
|
|
222 |
guidance_scale=guidance_scale,
|
223 |
generator=generator,
|
224 |
)
|
|
|
225 |
images.append((result.images[0], str(current_seed)))
|
226 |
|
227 |
if increment_seed:
|
228 |
current_seed += 1
|
229 |
|
230 |
+
if ZERO_GPU:
|
231 |
+
# spaces always start fresh
|
232 |
+
loader.pipe = None
|
233 |
+
|
234 |
return images
|