Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
from DeepCache import DeepCacheSDHelper | |
from diffusers import ( | |
DEISMultistepScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
HeunDiscreteScheduler, | |
KDPM2AncestralDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
StableDiffusionPipeline, | |
) | |
from diffusers.models import AutoencoderKL, AutoencoderTiny | |
from torch._dynamo import OptimizedModule | |
ZERO_GPU = ( | |
os.environ.get("SPACES_ZERO_GPU", "").lower() == "true" | |
or os.environ.get("SPACES_ZERO_GPU", "") == "1" | |
) | |
EMBEDDINGS = { | |
"./embeddings/bad_prompt_version2.pt": "<bad_prompt>", | |
"./embeddings/BadDream.pt": "<bad_dream>", | |
"./embeddings/FastNegativeV2.pt": "<fast_negative>", | |
"./embeddings/negative_hand.pt": "<negative_hand>", | |
"./embeddings/UnrealisticDream.pt": "<unrealistic_dream>", | |
} | |
# inspired by ComfyUI | |
# https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/model_management.py | |
class Loader: | |
_instance = None | |
def __new__(cls): | |
if cls._instance is None: | |
cls._instance = super(Loader, cls).__new__(cls) | |
cls._instance.pipe = None | |
return cls._instance | |
def _load_deepcache(self, interval=1): | |
has_deepcache = hasattr(self.pipe, "deepcache") | |
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval: | |
return | |
if has_deepcache: | |
self.pipe.deepcache.disable() | |
else: | |
self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe) | |
self.pipe.deepcache.set_params(cache_interval=interval) | |
self.pipe.deepcache.enable() | |
def _load_vae(self, model_name=None, taesd=False, variant=None): | |
vae_type = type(self.pipe.vae) | |
is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule)) | |
is_tiny = issubclass(vae_type, AutoencoderTiny) | |
# by default all models use KL | |
if is_kl and taesd: | |
# can't compile tiny VAE | |
print("Switching to Tiny VAE...") | |
self.pipe.vae = AutoencoderTiny.from_pretrained( | |
pretrained_model_name_or_path="madebyollin/taesd", | |
use_safetensors=True, | |
).to(device=self.pipe.device) | |
return | |
if is_tiny and not taesd: | |
print("Switching to KL VAE...") | |
model = AutoencoderKL.from_pretrained( | |
pretrained_model_name_or_path=model_name, | |
use_safetensors=True, | |
subfolder="vae", | |
variant=variant, | |
).to(device=self.pipe.device) | |
self.pipe.vae = torch.compile( | |
mode="reduce-overhead", | |
fullgraph=True, | |
model=model, | |
) | |
def load(self, model, scheduler, karras, taesd, deepcache_interval, dtype, device): | |
model_lower = model.lower() | |
schedulers = { | |
"DEIS 2M": DEISMultistepScheduler, | |
"DPM++ 2M": DPMSolverMultistepScheduler, | |
"DPM2 a": KDPM2AncestralDiscreteScheduler, | |
"Euler a": EulerAncestralDiscreteScheduler, | |
"Heun": HeunDiscreteScheduler, | |
"LMS": LMSDiscreteScheduler, | |
"PNDM": PNDMScheduler, | |
} | |
scheduler_kwargs = { | |
"beta_schedule": "scaled_linear", | |
"timestep_spacing": "leading", | |
"use_karras_sigmas": karras, | |
"beta_start": 0.00085, | |
"beta_end": 0.012, | |
"steps_offset": 1, | |
} | |
if scheduler in ["Euler a", "PNDM"]: | |
del scheduler_kwargs["use_karras_sigmas"] | |
# no fp16 variant | |
if not ZERO_GPU and model_lower not in [ | |
"sg161222/realistic_vision_v5.1_novae", | |
"prompthero/openjourney-v4", | |
"linaqruf/anything-v3-1", | |
]: | |
variant = "fp16" | |
else: | |
variant = None | |
pipe_kwargs = { | |
"scheduler": schedulers[scheduler](**scheduler_kwargs), | |
"pretrained_model_name_or_path": model_lower, | |
"requires_safety_checker": False, | |
"use_safetensors": True, | |
"safety_checker": None, | |
"variant": variant, | |
} | |
# already loaded | |
if self.pipe is not None: | |
model_name = self.pipe.config._name_or_path | |
same_model = model_name.lower() == model_lower | |
same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler]) | |
same_karras = ( | |
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas") | |
or self.pipe.scheduler.config.use_karras_sigmas == karras | |
) | |
if same_model: | |
if not same_scheduler: | |
print(f"Switching to {scheduler}...") | |
if not same_karras: | |
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...") | |
if not same_scheduler or not same_karras: | |
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs) | |
self._load_vae(model_lower, taesd, variant) | |
self._load_deepcache(interval=deepcache_interval) | |
return self.pipe | |
else: | |
print(f"Unloading {model_name.lower()}...") | |
self.pipe = None | |
print(f"Loading {model_lower} with {'Tiny' if taesd else 'KL'} VAE...") | |
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to( | |
device=device, | |
dtype=dtype, | |
) | |
self.pipe.load_textual_inversion( | |
pretrained_model_name_or_path=list(EMBEDDINGS.keys()), | |
tokens=list(EMBEDDINGS.values()), | |
) | |
self._load_vae(model_lower, taesd, variant) | |
self._load_deepcache(interval=deepcache_interval) | |
torch.cuda.empty_cache() | |
return self.pipe | |