adaface-animate2 / faceadapter /face_adapter.py
jefflee's picture
float32 unet
6896f2b
import os
from typing import List
import torch
from diffusers import StableDiffusionPipeline
from diffusers.pipelines.controlnet import MultiControlNetModel
from PIL import Image
from safetensors import safe_open
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from .attention_processor import LoRAFaceAttnProcessor
from .utils import is_torch2_available, get_generator
if is_torch2_available():
from .attention_processor import (
AttnProcessor2_0 as AttnProcessor,
)
else:
from .attention_processor import AttnProcessor
from .resampler import Resampler
class ImageProjModel(torch.nn.Module):
"""Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.generator = None
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class MLPProjModel(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
super().__init__()
self.proj = torch.nn.Sequential(
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
torch.nn.GELU(),
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
torch.nn.LayerNorm(cross_attention_dim)
)
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class FaceAdapterLora:
def __init__(self, sd_pipe, image_encoder_path, id_ckpt, device, num_tokens=4,torch_type=torch.float32):
self.device = device
self.image_encoder_path = image_encoder_path
self.id_ckpt = id_ckpt
self.num_tokens = num_tokens
self.torch_type = torch_type
self.pipe = sd_pipe.to(self.device)
self.set_face_adapter()
# load image encoder
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
self.device, dtype=self.torch_type
)
self.clip_image_processor = CLIPImageProcessor()
# image proj model
self.image_proj_model = self.init_proj()
self.load_face_adapter()
def init_proj(self):
image_proj_model = ImageProjModel(
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
clip_embeddings_dim=self.image_encoder.config.projection_dim,
clip_extra_context_tokens=self.num_tokens,
).to(self.device, dtype=self.torch_type)
return image_proj_model
def set_face_adapter(self):
unet = self.pipe.unet
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor().to(self.device, dtype=self.torch_type)
else:
attn_procs[name] = LoRAFaceAttnProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=128, num_tokens=self.num_tokens,
).to(self.device, dtype=self.torch_type)
unet.set_attn_processor(attn_procs)
def load_face_adapter(self):
state_dict = torch.load(self.id_ckpt, map_location="cpu")
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
image_proj_dict={}
face_adapter_proj={}
for k,v in state_dict.items():
if k.startswith("module.image_proj_model"):
image_proj_dict[k.replace("module.image_proj_model.", "")] = state_dict[k]
elif k.startswith("module.adapter_modules."):
face_adapter_proj[k.replace("module.adapter_modules.", "")] = state_dict[k]
elif k.startswith("image_proj_model"):
image_proj_dict[k.replace("image_proj_model.", "")] = state_dict[k]
elif k.startswith("adapter_modules."):
face_adapter_proj[k.replace("adapter_modules.", "")] = state_dict[k]
else:
print("ERROR!")
return
state_dict = {}
state_dict['image_proj'] = image_proj_dict
state_dict["face_adapter"] = face_adapter_proj
self.image_proj_model.load_state_dict(state_dict["image_proj"])
adapter_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
adapter_layers.load_state_dict(state_dict["face_adapter"],strict=False)
@torch.inference_mode()
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
if pil_image is not None:
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=self.torch_type)).image_embeds
else:
clip_image_embeds = clip_image_embeds.to(self.device, dtype=self.torch_type)
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
return image_prompt_embeds, uncond_image_prompt_embeds
# This scales the face-adapter face_hidden_states (attn output). attn_processor.scale: default 1.0.
# faceadapter/attention_processor.py:L283.
def set_attn_scale(self, attn_scale):
for attn_processor in self.pipe.unet.attn_processors.values():
if isinstance(attn_processor, LoRAFaceAttnProcessor):
attn_processor.scale = attn_scale
def generate(
self,
pil_image=None,
clip_image_embeds=None,
prompt=None,
negative_prompt=None,
attn_scale=1,
num_samples=4,
seed=None,
guidance_scale=7.5,
num_inference_steps=30,
**kwargs,
):
self.set_attn_scale(attn_scale)
if pil_image is not None:
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
else:
num_prompts = clip_image_embeds.size(0)
if prompt is None:
prompt = "best quality, high quality"
if negative_prompt is None:
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
pil_image=pil_image, clip_image_embeds=clip_image_embeds
)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
with torch.inference_mode():
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
prompt,
device=self.device,
num_images_per_prompt=num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
generator = get_generator(seed, self.device)
images = self.pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
**kwargs,
).images
return images
class FaceAdapterPlusForVideoLora(FaceAdapterLora):
def init_proj(self):
image_proj_model = Resampler(
dim=self.pipe.unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=self.num_tokens,
embedding_dim=self.image_encoder.config.hidden_size,
output_dim=self.pipe.unet.config.cross_attention_dim,
ff_mult=4,
).to(self.device, dtype=self.torch_type)
return image_proj_model
@torch.inference_mode()
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(self.device, dtype=self.torch_type)
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
uncond_clip_image_embeds = self.image_encoder(
torch.zeros_like(clip_image), output_hidden_states=True
).hidden_states[-2]
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds
def generate(
self,
pil_image=None,
init_image=None,
init_image_strength=1.,
clip_image_embeds=None,
prompt=None,
negative_prompt=None,
adaface_embeds=None,
adaface_scale=1.0,
attn_scale=1.0,
num_samples=1,
seed=None,
guidance_scale=4,
num_inference_steps=30,
adaface_anneal_steps=0,
width=512,
height=512,
video_length=16,
image_embed_scale=1,
controlnet_images: torch.FloatTensor = None,
controlnet_image_index: list = [0],
**kwargs,
):
self.set_attn_scale(attn_scale)
num_prompts=1
if prompt is None:
prompt = "best quality, high quality"
if negative_prompt is None:
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
num_prompt_img = len(pil_image)
total_image_prompt_embeds = 0
for i in range(num_prompt_img):
prompt_img = pil_image[i]
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
pil_image=prompt_img, clip_image_embeds=clip_image_embeds
)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
total_image_prompt_embeds += image_prompt_embeds
total_image_prompt_embeds /= num_prompt_img
image_prompt_embeds = total_image_prompt_embeds
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
with torch.inference_mode():
# if do_classifier_free_guidance,
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method.
# https://github.com/huggingface/diffusers/blob/70f8d4b488f03730ae3bc11d4d707bafe153d10d/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L469
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
prompt,
device=self.device,
num_videos_per_prompt=num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
if adaface_embeds is not None:
prompt_embeds0_ = prompt_embeds_
# self.torch_type == torch.float16. adaface_embeds is torch.float32.
prompt_embeds_ = adaface_embeds.repeat(num_samples, 1, 1).to(dtype=self.torch_type) * adaface_scale
# Scale down ID-Animator's face embeddings, so that they don't dominate the generation.
# Note to balance image_prompt_embeds with uncond_image_prompt_embeds after scaling.
image_prompt_embeds = image_prompt_embeds * image_embed_scale + uncond_image_prompt_embeds * (1 - image_embed_scale)
# We still need uncond_image_prompt_embeds, otherwise the output is blank.
prompt_embeds_end = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
prompt_embeds_begin = torch.cat([prompt_embeds0_, torch.zeros_like(image_prompt_embeds)], dim=1)
prompt_embeds = (prompt_embeds_begin, prompt_embeds_end, adaface_anneal_steps)
else:
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
# prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
generator = get_generator(seed, self.device)
video = self.pipe(
init_image=init_image,
init_image_strength=init_image_strength,
prompt = "",
prompt_embeds = prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
width = width,
height=height,
video_length = video_length,
controlnet_images = controlnet_images,
controlnet_image_index=controlnet_image_index,
**kwargs,
).videos
return video
def generate_video_edit(
self,
pil_image=None,
clip_image_embeds=None,
prompt=None,
negative_prompt=None,
attn_scale=1.0,
num_samples=1,
seed=None,
guidance_scale=7.5,
num_inference_steps=30,
width=512,
height=512,
video_length=16,
video_latents=None,
**kwargs,
):
self.set_attn_scale(attn_scale)
if pil_image is not None:
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
else:
num_prompts = clip_image_embeds.size(0)
if prompt is None:
prompt = "best quality, high quality"
if negative_prompt is None:
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
pil_image=pil_image, clip_image_embeds=clip_image_embeds
)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
with torch.inference_mode():
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
prompt,
device=self.device,
num_videos_per_prompt=num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
generator = get_generator(seed, self.device)
video = self.pipe.video_edit(
prompt = "",
prompt_embeds = prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
width = width,
height=height,
video_length = video_length,
latents=video_latents,
**kwargs,
).videos
return video