#!/usr/bin/python # -*- encoding: utf-8 -*- from logger import setup_logger import BiSeNet import torch import os import os.path as osp import numpy as np from PIL import Image import torchvision.transforms as transforms import cv2 def vis_parsing_maps(im, parsing_anno, stride, save_im=False, save_path='vis_results/parsing_map_on_im.jpg'): # Colors for all 20 parts part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 0, 85], [255, 0, 170], [0, 255, 0], [85, 255, 0], [170, 255, 0], [0, 255, 85], [0, 255, 170], [0, 0, 255], [85, 0, 255], [170, 0, 255], [0, 85, 255], [0, 170, 255], [255, 255, 0], [255, 255, 85], [255, 255, 170], [255, 0, 255], [255, 85, 255], [255, 170, 255], [0, 255, 255], [85, 255, 255], [170, 255, 255]] im = np.array(im) vis_im = im.copy().astype(np.uint8) vis_parsing_anno = parsing_anno.copy().astype(np.uint8) vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST) vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255 num_of_class = np.max(vis_parsing_anno) for pi in range(1, num_of_class + 1): index = np.where(vis_parsing_anno == pi) vis_parsing_anno_color[index[0], index[1], :] = part_colors[pi] vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8) # print(vis_parsing_anno_color.shape, vis_im.shape) vis_im = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0) # Save result or not if save_im: cv2.imwrite(save_path[:-4] +'.png', vis_parsing_anno) cv2.imwrite(save_path, vis_im, [int(cv2.IMWRITE_JPEG_QUALITY), 100]) # return vis_im def evaluate(respth='./res/test_res', dspth='./data', cp='model_final_diss.pth'): if not os.path.exists(respth): os.makedirs(respth) n_classes = 19 net = BiSeNet(n_classes=n_classes) net.cuda() save_pth = osp.join('res/cp', cp) net.load_state_dict(torch.load(save_pth)) net.eval() to_tensor = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) with torch.no_grad(): for image_path in os.listdir(dspth): img = Image.open(osp.join(dspth, image_path)) image = img.resize((512, 512), Image.BILINEAR) img = to_tensor(image) img = torch.unsqueeze(img, 0) img = img.cuda() out = net(img)[0] parsing = out.squeeze(0).cpu().numpy().argmax(0) # print(parsing) print(np.unique(parsing)) vis_parsing_maps(image, parsing, stride=1, save_im=True, save_path=osp.join(respth, image_path)) if __name__ == "__main__": evaluate(dspth='/home/zll/data/CelebAMask-HQ/test-img', cp='79999_iter.pth')