adaface-neurips commited on
Commit
d2b3308
·
1 Parent(s): a461e74

fix style switching bugs

Browse files
adaface/adaface_wrapper.py CHANGED
@@ -4,6 +4,7 @@ from transformers import CLIPTextModel
4
  from diffusers import (
5
  StableDiffusionPipeline,
6
  StableDiffusionImg2ImgPipeline,
 
7
  StableDiffusion3Pipeline,
8
  #FluxPipeline,
9
  DDIMScheduler,
@@ -25,7 +26,7 @@ class AdaFaceWrapper(nn.Module):
25
  main_unet_filepath=None, unet_types=None, extra_unet_dirpaths=None, unet_weights=None,
26
  device='cuda', is_training=False):
27
  '''
28
- pipeline_name: "text2img", "img2img", "text2img3", "flux", or None.
29
  If None, it's used only as a face encoder, and the unet and vae are
30
  removed from the pipeline to release RAM.
31
  '''
@@ -64,6 +65,13 @@ class AdaFaceWrapper(nn.Module):
64
  self.encoders_num_id_vecs = self.id2ada_prompt_encoder.encoders_num_id_vecs
65
  self.extend_tokenizer_and_text_encoder()
66
 
 
 
 
 
 
 
 
67
  def initialize_pipeline(self):
68
  self.id2ada_prompt_encoder = create_id2ada_prompt_encoder(self.adaface_encoder_types,
69
  self.adaface_ckpt_paths,
@@ -95,6 +103,8 @@ class AdaFaceWrapper(nn.Module):
95
  PipelineClass = StableDiffusionImg2ImgPipeline
96
  elif self.pipeline_name == "text2img":
97
  PipelineClass = StableDiffusionPipeline
 
 
98
  elif self.pipeline_name == "text2img3":
99
  PipelineClass = StableDiffusion3Pipeline
100
  #elif self.pipeline_name == "flux":
@@ -109,6 +119,7 @@ class AdaFaceWrapper(nn.Module):
109
  if self.base_model_path is None:
110
  base_model_path_dict = {
111
  'text2img': 'models/sd15-dste8-vae.safetensors',
 
112
  'text2img3': 'stabilityai/stable-diffusion-3-medium-diffusers',
113
  'flux': 'black-forest-labs/FLUX.1-schnell',
114
  }
@@ -156,7 +167,7 @@ class AdaFaceWrapper(nn.Module):
156
  pipeline.vae = None
157
  print("Removed UNet and VAE from the pipeline.")
158
 
159
- if self.pipeline_name not in ["text2img3", "flux"]:
160
  noise_scheduler = DDIMScheduler(
161
  num_train_timesteps=1000,
162
  beta_start=0.00085,
@@ -277,6 +288,8 @@ class AdaFaceWrapper(nn.Module):
277
 
278
  return prompt
279
 
 
 
280
  # avg_at_stage: 'id_emb', 'img_prompt_emb', or None.
281
  # avg_at_stage == ada_prompt_emb usually produces the worst results.
282
  # id_emb is slightly better than img_prompt_emb, but sometimes img_prompt_emb is better.
@@ -297,14 +310,18 @@ class AdaFaceWrapper(nn.Module):
297
  if all_adaface_subj_embs is None:
298
  return None
299
 
300
- # [1, 1, 16, 768] -> [16, 768]
301
- all_adaface_subj_embs = all_adaface_subj_embs.squeeze(0).squeeze(0)
 
 
 
 
302
 
303
  if update_text_encoder:
304
  self.update_text_encoder_subj_embeddings(all_adaface_subj_embs)
305
  return all_adaface_subj_embs
306
 
307
- def diffusers_encode_prompts(self, prompt, negative_prompt, device):
308
  # pooled_prompt_embeds_, negative_pooled_prompt_embeds_ are used by text2img3 and flux.
309
  pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = None, None
310
 
@@ -318,17 +335,26 @@ class AdaFaceWrapper(nn.Module):
318
  prompt_embeds_ = prompt_embeds_.unsqueeze(0)
319
  negative_prompt_embeds_ = negative_prompt_embeds_.unsqueeze(0)
320
  else:
321
- if self.pipeline_name in ["text2img3", "flux"]:
322
- # prompt_embeds_, negative_prompt_embeds_: [1, 333, 4096]
323
- # pooled_prompt_embeds_, negative_pooled_prompt_embeds_: [1, 2048]
324
  # CLIP Text Encoder prompt uses a maximum sequence length of 77.
325
  # T5 Text Encoder prompt uses a maximum sequence length of 256.
326
  # 333 = 256 + 77.
327
  prompt_t5 = prompt + "".join([", "] * 256)
328
- if self.pipeline_name == "text2img3":
 
 
 
 
 
 
 
 
 
 
329
  prompt_embeds_, negative_prompt_embeds_, \
330
  pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \
331
- self.pipeline.encode_prompt(prompt, prompt, prompt_t5, device=device,
332
  num_images_per_prompt=1,
333
  do_classifier_free_guidance=True,
334
  negative_prompt=negative_prompt)
@@ -362,6 +388,7 @@ class AdaFaceWrapper(nn.Module):
362
  if device is None:
363
  device = self.device
364
 
 
365
  prompt = self.update_prompt(prompt, placeholder_tokens_pos=placeholder_tokens_pos)
366
  if verbose:
367
  print(f"Subject prompt:\n{prompt}")
@@ -373,11 +400,11 @@ class AdaFaceWrapper(nn.Module):
373
  negative_prompt = self.update_prompt(negative_prompt0, placeholder_tokens_pos='prepend')
374
  null_negative_prompt = self.update_prompt(negative_prompt0, placeholder_tokens_pos='prepend',
375
  use_null_placeholders=True)
376
- if verbose:
377
- print(f"do_neg_id_prompt_weight: {do_neg_id_prompt_weight}")
378
- #print(f"Negative prompt:\n{negative_prompt}")
379
- #print(f"Null negative prompt:\n{null_negative_prompt}")
380
 
 
381
  else:
382
  null_negative_prompt = None
383
 
@@ -386,11 +413,11 @@ class AdaFaceWrapper(nn.Module):
386
  self.pipeline.text_encoder.to(device)
387
 
388
  prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \
389
- self.diffusers_encode_prompts(prompt, negative_prompt, device)
390
 
391
  if 0 < do_neg_id_prompt_weight < 1:
392
  _, negative_prompt_embeds_null, _, _ = \
393
- self.diffusers_encode_prompts(prompt, null_negative_prompt, device)
394
  negative_prompt_embeds_ = negative_prompt_embeds_ * do_neg_id_prompt_weight + \
395
  negative_prompt_embeds_null * (1 - do_neg_id_prompt_weight)
396
 
@@ -399,9 +426,8 @@ class AdaFaceWrapper(nn.Module):
399
  # ref_img_strength is used only in the img2img pipeline.
400
  def forward(self, noise, prompt, negative_prompt=None,
401
  placeholder_tokens_pos='append',
402
- guidance_scale=6.0,
403
  do_neg_id_prompt_weight=0,
404
- out_image_count=4,
405
  ref_img_strength=0.8, generator=None, verbose=False):
406
  noise = noise.to(device=self.device, dtype=torch.float16)
407
 
@@ -419,7 +445,7 @@ class AdaFaceWrapper(nn.Module):
419
  if negative_prompt_embeds_ is not None:
420
  negative_prompt_embeds_ = negative_prompt_embeds_.repeat(out_image_count, 1, 1)
421
 
422
- if self.pipeline_name == "text2img3":
423
  pooled_prompt_embeds_ = pooled_prompt_embeds_.repeat(out_image_count, 1)
424
  negative_pooled_prompt_embeds_ = negative_pooled_prompt_embeds_.repeat(out_image_count, 1)
425
 
 
4
  from diffusers import (
5
  StableDiffusionPipeline,
6
  StableDiffusionImg2ImgPipeline,
7
+ StableDiffusionXLPipeline,
8
  StableDiffusion3Pipeline,
9
  #FluxPipeline,
10
  DDIMScheduler,
 
26
  main_unet_filepath=None, unet_types=None, extra_unet_dirpaths=None, unet_weights=None,
27
  device='cuda', is_training=False):
28
  '''
29
+ pipeline_name: "text2img", "text2imgxl", "img2img", "text2img3", "flux", or None.
30
  If None, it's used only as a face encoder, and the unet and vae are
31
  removed from the pipeline to release RAM.
32
  '''
 
65
  self.encoders_num_id_vecs = self.id2ada_prompt_encoder.encoders_num_id_vecs
66
  self.extend_tokenizer_and_text_encoder()
67
 
68
+ def to(self, device):
69
+ self.device = device
70
+ self.id2ada_prompt_encoder.to(device)
71
+ self.pipeline.to(device)
72
+ print(f"Moved AdaFaceWrapper to {device}.")
73
+ return self
74
+
75
  def initialize_pipeline(self):
76
  self.id2ada_prompt_encoder = create_id2ada_prompt_encoder(self.adaface_encoder_types,
77
  self.adaface_ckpt_paths,
 
103
  PipelineClass = StableDiffusionImg2ImgPipeline
104
  elif self.pipeline_name == "text2img":
105
  PipelineClass = StableDiffusionPipeline
106
+ elif self.pipeline_name == "text2imgxl":
107
+ PipelineClass = StableDiffusionXLPipeline
108
  elif self.pipeline_name == "text2img3":
109
  PipelineClass = StableDiffusion3Pipeline
110
  #elif self.pipeline_name == "flux":
 
119
  if self.base_model_path is None:
120
  base_model_path_dict = {
121
  'text2img': 'models/sd15-dste8-vae.safetensors',
122
+ 'text2imgxl': 'stabilityai/stable-diffusion-xl-base-1.0',
123
  'text2img3': 'stabilityai/stable-diffusion-3-medium-diffusers',
124
  'flux': 'black-forest-labs/FLUX.1-schnell',
125
  }
 
167
  pipeline.vae = None
168
  print("Removed UNet and VAE from the pipeline.")
169
 
170
+ if self.pipeline_name not in ["text2imgxl", "text2img3", "flux"]:
171
  noise_scheduler = DDIMScheduler(
172
  num_train_timesteps=1000,
173
  beta_start=0.00085,
 
288
 
289
  return prompt
290
 
291
+ # If face_id_embs is None, then it extracts face_id_embs from the images,
292
+ # then map them to ada prompt embeddings.
293
  # avg_at_stage: 'id_emb', 'img_prompt_emb', or None.
294
  # avg_at_stage == ada_prompt_emb usually produces the worst results.
295
  # id_emb is slightly better than img_prompt_emb, but sometimes img_prompt_emb is better.
 
310
  if all_adaface_subj_embs is None:
311
  return None
312
 
313
+ if all_adaface_subj_embs.ndim == 4:
314
+ # [1, 1, 16, 768] -> [16, 768]
315
+ all_adaface_subj_embs = all_adaface_subj_embs.squeeze(0).squeeze(0)
316
+ elif all_adaface_subj_embs.ndim == 3:
317
+ # [1, 16, 768] -> [16, 768]
318
+ all_adaface_subj_embs = all_adaface_subj_embs.squeeze(0)
319
 
320
  if update_text_encoder:
321
  self.update_text_encoder_subj_embeddings(all_adaface_subj_embs)
322
  return all_adaface_subj_embs
323
 
324
+ def diffusers_encode_prompts(self, prompt, plain_prompt, negative_prompt, device):
325
  # pooled_prompt_embeds_, negative_pooled_prompt_embeds_ are used by text2img3 and flux.
326
  pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = None, None
327
 
 
335
  prompt_embeds_ = prompt_embeds_.unsqueeze(0)
336
  negative_prompt_embeds_ = negative_prompt_embeds_.unsqueeze(0)
337
  else:
338
+ if self.pipeline_name in ["text2imgxl", "text2img3", "flux"]:
339
+ prompt_2 = plain_prompt
 
340
  # CLIP Text Encoder prompt uses a maximum sequence length of 77.
341
  # T5 Text Encoder prompt uses a maximum sequence length of 256.
342
  # 333 = 256 + 77.
343
  prompt_t5 = prompt + "".join([", "] * 256)
344
+
345
+ # prompt_embeds_, negative_prompt_embeds_: [1, 333, 4096]
346
+ # pooled_prompt_embeds_, negative_pooled_prompt_embeds_: [1, 2048]
347
+ if self.pipeline_name == "text2imgxl":
348
+ prompt_embeds_, negative_prompt_embeds_, \
349
+ pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \
350
+ self.pipeline.encode_prompt(prompt, prompt_2, device=device,
351
+ num_images_per_prompt=1,
352
+ do_classifier_free_guidance=True,
353
+ negative_prompt=negative_prompt)
354
+ elif self.pipeline_name == "text2img3":
355
  prompt_embeds_, negative_prompt_embeds_, \
356
  pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \
357
+ self.pipeline.encode_prompt(prompt, prompt_2, prompt_t5, device=device,
358
  num_images_per_prompt=1,
359
  do_classifier_free_guidance=True,
360
  negative_prompt=negative_prompt)
 
388
  if device is None:
389
  device = self.device
390
 
391
+ plain_prompt = prompt
392
  prompt = self.update_prompt(prompt, placeholder_tokens_pos=placeholder_tokens_pos)
393
  if verbose:
394
  print(f"Subject prompt:\n{prompt}")
 
400
  negative_prompt = self.update_prompt(negative_prompt0, placeholder_tokens_pos='prepend')
401
  null_negative_prompt = self.update_prompt(negative_prompt0, placeholder_tokens_pos='prepend',
402
  use_null_placeholders=True)
403
+ ''' if verbose:
404
+ print(f"Negative prompt:\n{negative_prompt}")
405
+ print(f"Null negative prompt:\n{null_negative_prompt}")
 
406
 
407
+ '''
408
  else:
409
  null_negative_prompt = None
410
 
 
413
  self.pipeline.text_encoder.to(device)
414
 
415
  prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \
416
+ self.diffusers_encode_prompts(prompt, plain_prompt, negative_prompt, device)
417
 
418
  if 0 < do_neg_id_prompt_weight < 1:
419
  _, negative_prompt_embeds_null, _, _ = \
420
+ self.diffusers_encode_prompts(prompt, plain_prompt, null_negative_prompt, device)
421
  negative_prompt_embeds_ = negative_prompt_embeds_ * do_neg_id_prompt_weight + \
422
  negative_prompt_embeds_null * (1 - do_neg_id_prompt_weight)
423
 
 
426
  # ref_img_strength is used only in the img2img pipeline.
427
  def forward(self, noise, prompt, negative_prompt=None,
428
  placeholder_tokens_pos='append',
 
429
  do_neg_id_prompt_weight=0,
430
+ guidance_scale=6.0, out_image_count=4,
431
  ref_img_strength=0.8, generator=None, verbose=False):
432
  noise = noise.to(device=self.device, dtype=torch.float16)
433
 
 
445
  if negative_prompt_embeds_ is not None:
446
  negative_prompt_embeds_ = negative_prompt_embeds_.repeat(out_image_count, 1, 1)
447
 
448
+ if self.pipeline_name in ["text2imgxl", "text2img3"]:
449
  pooled_prompt_embeds_ = pooled_prompt_embeds_.repeat(out_image_count, 1)
450
  negative_pooled_prompt_embeds_ = negative_pooled_prompt_embeds_.repeat(out_image_count, 1)
451
 
app.py CHANGED
@@ -24,7 +24,7 @@ parser = argparse.ArgumentParser()
24
  parser.add_argument("--adaface_encoder_types", type=str, nargs="+", default=["consistentID", "arc2face"],
25
  choices=["arc2face", "consistentID"], help="Type(s) of the ID2Ada prompt encoders")
26
  parser.add_argument('--adaface_ckpt_path', type=str,
27
- default='models/adaface/VGGface2_HQ_masks2024-10-13T11-21-07_zero3-ada-9000.pt')
28
  parser.add_argument('--model_style_type', type=str, default='realistic',
29
  choices=["realistic", "anime", "photorealistic"], help="Type of the base model")
30
  parser.add_argument("--guidance_scale", type=float, default=6.0,
@@ -51,10 +51,10 @@ device = "cuda" if args.gpu is None else f"cuda:{args.gpu}"
51
  global adaface, id_animator
52
 
53
  base_model_path = model_style_type2base_model_path[args.model_style_type]
54
- id_animator = load_model(model_style_type=args.model_style_type, device=device)
55
  adaface = AdaFaceWrapper(pipeline_name="text2img", base_model_path=base_model_path,
56
  adaface_encoder_types=args.adaface_encoder_types,
57
- adaface_ckpt_paths=[args.adaface_ckpt_path], device=device)
58
 
59
  basedir = os.getcwd()
60
  savedir = os.path.join(basedir,'samples')
@@ -80,11 +80,14 @@ def get_clicked_image(data: gr.SelectData):
80
 
81
  @spaces.GPU
82
  def gen_init_images(uploaded_image_paths, prompt, guidance_scale, do_neg_id_prompt_weight, out_image_count=4):
83
- global adaface, id_animator
84
  if uploaded_image_paths is None:
85
  print("No image uploaded")
86
  return None, None, None
87
 
 
 
 
 
88
  # uploaded_image_paths is a list of tuples:
89
  # [('/tmp/gradio/249981e66a7c665aaaf1c7eaeb24949af4366c88/jensen huang.jpg', None)]
90
  # Extract the file paths.
@@ -132,7 +135,10 @@ def generate_video(image_container, uploaded_image_paths, init_img_file_paths, i
132
  seed, attn_scale, image_embed_cfg_begin_scale, image_embed_cfg_end_scale,
133
  is_adaface_enabled, adaface_ckpt_path, adaface_power_scale,
134
  id_animator_anneal_steps, progress=gr.Progress(track_tqdm=True)):
 
135
  global adaface, id_animator
 
 
136
 
137
  if prompt is None:
138
  prompt = ""
@@ -220,7 +226,7 @@ def check_prompt_and_model_type(prompt, model_style_type):
220
  id_animator = load_model(model_style_type=model_style_type, device=device)
221
  adaface = AdaFaceWrapper(pipeline_name="text2img", base_model_path=base_model_path,
222
  adaface_encoder_types=args.adaface_encoder_types,
223
- adaface_ckpt_paths=[args.adaface_ckpt_path], device=device)
224
  # Update base model type.
225
  args.model_style_type = model_style_type
226
 
@@ -243,7 +249,7 @@ with gr.Blocks(css=css, theme=gr.themes.Origin()) as demo:
243
 
244
  ❗️**Tips**❗️
245
  - You can upload one or more subject images for generating ID-specific video.
246
- - If the face dominates the video frames, try decreasing the guidance scale.
247
  - If the face loses focus, try increasing the guidance scale.
248
  - If the motion is weird, e.g., the prompt is "... running", try increasing the number of sampling steps.
249
  - Usage explanations and demos: [Readme](https://huggingface.co/spaces/adaface-neurips/adaface-animate/blob/main/README2.md).
@@ -344,7 +350,7 @@ with gr.Blocks(css=css, theme=gr.themes.Origin()) as demo:
344
  maximum=0.9,
345
  step=0.1,
346
  value=args.do_neg_id_prompt_weight,
347
- visible=False
348
  )
349
 
350
  seed = gr.Slider(
 
24
  parser.add_argument("--adaface_encoder_types", type=str, nargs="+", default=["consistentID", "arc2face"],
25
  choices=["arc2face", "consistentID"], help="Type(s) of the ID2Ada prompt encoders")
26
  parser.add_argument('--adaface_ckpt_path', type=str,
27
+ default='models/adaface/VGGface2_HQ_masks2024-10-14T16-09-24_zero3-ada-3500.pt')
28
  parser.add_argument('--model_style_type', type=str, default='realistic',
29
  choices=["realistic", "anime", "photorealistic"], help="Type of the base model")
30
  parser.add_argument("--guidance_scale", type=float, default=6.0,
 
51
  global adaface, id_animator
52
 
53
  base_model_path = model_style_type2base_model_path[args.model_style_type]
54
+ id_animator = load_model(model_style_type=args.model_style_type, device='cpu')
55
  adaface = AdaFaceWrapper(pipeline_name="text2img", base_model_path=base_model_path,
56
  adaface_encoder_types=args.adaface_encoder_types,
57
+ adaface_ckpt_paths=[args.adaface_ckpt_path], device='cpu')
58
 
59
  basedir = os.getcwd()
60
  savedir = os.path.join(basedir,'samples')
 
80
 
81
  @spaces.GPU
82
  def gen_init_images(uploaded_image_paths, prompt, guidance_scale, do_neg_id_prompt_weight, out_image_count=4):
 
83
  if uploaded_image_paths is None:
84
  print("No image uploaded")
85
  return None, None, None
86
 
87
+ global adaface, id_animator
88
+ adaface.to(device)
89
+ id_animator.to(device)
90
+
91
  # uploaded_image_paths is a list of tuples:
92
  # [('/tmp/gradio/249981e66a7c665aaaf1c7eaeb24949af4366c88/jensen huang.jpg', None)]
93
  # Extract the file paths.
 
135
  seed, attn_scale, image_embed_cfg_begin_scale, image_embed_cfg_end_scale,
136
  is_adaface_enabled, adaface_ckpt_path, adaface_power_scale,
137
  id_animator_anneal_steps, progress=gr.Progress(track_tqdm=True)):
138
+
139
  global adaface, id_animator
140
+ adaface.to(device)
141
+ id_animator.to(device)
142
 
143
  if prompt is None:
144
  prompt = ""
 
226
  id_animator = load_model(model_style_type=model_style_type, device=device)
227
  adaface = AdaFaceWrapper(pipeline_name="text2img", base_model_path=base_model_path,
228
  adaface_encoder_types=args.adaface_encoder_types,
229
+ adaface_ckpt_paths=[args.adaface_ckpt_path], device='cpu')
230
  # Update base model type.
231
  args.model_style_type = model_style_type
232
 
 
249
 
250
  ❗️**Tips**❗️
251
  - You can upload one or more subject images for generating ID-specific video.
252
+ - If the face dominates the video frames, try increasing the 'Weight of ID prompt in the negative prompt'.
253
  - If the face loses focus, try increasing the guidance scale.
254
  - If the motion is weird, e.g., the prompt is "... running", try increasing the number of sampling steps.
255
  - Usage explanations and demos: [Readme](https://huggingface.co/spaces/adaface-neurips/adaface-animate/blob/main/README2.md).
 
350
  maximum=0.9,
351
  step=0.1,
352
  value=args.do_neg_id_prompt_weight,
353
+ visible=True
354
  )
355
 
356
  seed = gr.Slider(
faceadapter/face_adapter.py CHANGED
@@ -1,11 +1,8 @@
1
- import os
2
  from typing import List
3
 
4
  import torch
5
- from diffusers import StableDiffusionPipeline
6
- from diffusers.pipelines.controlnet import MultiControlNetModel
7
  from PIL import Image
8
- from safetensors import safe_open
9
  from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10
  from .attention_processor import LoRAFaceAttnProcessor
11
 
@@ -78,6 +75,13 @@ class FaceAdapterLora:
78
 
79
  self.load_face_adapter()
80
 
 
 
 
 
 
 
 
81
  def init_proj(self):
82
  image_proj_model = ImageProjModel(
83
  cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
 
 
1
  from typing import List
2
 
3
  import torch
4
+ from torch import nn
 
5
  from PIL import Image
 
6
  from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
7
  from .attention_processor import LoRAFaceAttnProcessor
8
 
 
75
 
76
  self.load_face_adapter()
77
 
78
+ def to(self, device):
79
+ self.device = device
80
+ self.pipe = self.pipe.to(device)
81
+ self.image_encoder = self.image_encoder.to(device)
82
+ self.image_proj_model = self.image_proj_model.to(device)
83
+ return self
84
+
85
  def init_proj(self):
86
  image_proj_model = ImageProjModel(
87
  cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
models/adaface/{VGGface2_HQ_masks2024-10-13T11-21-07_zero3-ada-9000.pt → VGGface2_HQ_masks2024-10-14T16-09-24_zero3-ada-3500.pt} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c8d4dae6291aa783c03de6e54997a79b7d61f7bdc2457afb6303bcfc290d0956
3
- size 1814921242
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d991773c169ecfa01ce1ec365d7791d9b732212b35118d0795f21cc0c1a99e77
3
+ size 1814921754