Spaces:
Running
on
Zero
Running
on
Zero
adaface-neurips
Allow dynamically changing base model style type, support anime style, upgrade adaface model
a29cf91
import torch | |
import torch.nn as nn | |
from transformers import CLIPTokenizer, CLIPImageProcessor | |
from .arc2face_models import CLIPTextModelWrapper | |
from ConsistentID.lib.pipeline_ConsistentID import ConsistentIDPipeline | |
from .util import perturb_tensor, pad_image_obj_to_square, \ | |
calc_stats, patch_clip_image_encoder_with_mask, CLIPVisionModelWithMask | |
from adaface.subj_basis_generator import SubjBasisGenerator | |
import torch.nn.functional as F | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from insightface.app import FaceAnalysis | |
import os | |
from omegaconf.listconfig import ListConfig | |
# adaface_encoder_types can be a list of one or more encoder types. | |
# adaface_ckpt_paths can be one or a list of ckpt paths. | |
# adaface_encoder_cfg_scales is None, or a list of scales for the adaface encoder types. | |
def create_id2ada_prompt_encoder(adaface_encoder_types, adaface_ckpt_paths=None, | |
adaface_encoder_cfg_scales=None, enabled_encoders=None, | |
*args, **kwargs): | |
if len(adaface_encoder_types) == 1: | |
adaface_encoder_type = adaface_encoder_types[0] | |
adaface_ckpt_path = adaface_ckpt_paths[0] if adaface_ckpt_paths is not None else None | |
if adaface_encoder_type == 'arc2face': | |
id2ada_prompt_encoder = \ | |
Arc2Face_ID2AdaPrompt(adaface_ckpt_path=adaface_ckpt_path, | |
*args, **kwargs) | |
elif adaface_encoder_type == 'consistentID': | |
id2ada_prompt_encoder = \ | |
ConsistentID_ID2AdaPrompt(pipe=None, | |
adaface_ckpt_path=adaface_ckpt_path, | |
*args, **kwargs) | |
else: | |
id2ada_prompt_encoder = Joint_FaceID2AdaPrompt(adaface_encoder_types, adaface_ckpt_paths, | |
adaface_encoder_cfg_scales, enabled_encoders, | |
*args, **kwargs) | |
return id2ada_prompt_encoder | |
class FaceID2AdaPrompt(nn.Module): | |
# To be initialized in derived classes. | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
# Initialize model components. | |
# These components of ConsistentID_ID2AdaPrompt will be shared with the teacher model. | |
# So we don't initialize them in the ctor(), but borrow them from the teacher model. | |
# These components of Arc2Face_ID2AdaPrompt will be initialized in its ctor(). | |
self.clip_image_encoder = None | |
self.clip_preprocessor = None | |
self.face_app = None | |
self.text_to_image_prompt_encoder = None | |
self.tokenizer = None | |
self.dtype = kwargs.get('dtype', torch.float16) | |
# Load Img2Ada SubjectBasisGenerator. | |
self.subject_string = kwargs.get('subject_string', 'z') | |
self.adaface_ckpt_path = kwargs.get('adaface_ckpt_path', None) | |
self.subj_basis_generator = None | |
# -1: use the default scale for the adaface encoder type. | |
# i.e., 6 for arc2face and 1 for consistentID. | |
self.out_id_embs_cfg_scale = kwargs.get('out_id_embs_cfg_scale', -1) | |
self.is_training = kwargs.get('is_training', False) | |
# extend_prompt2token_proj_attention_multiplier is an integer >= 1. | |
# TODO: extend_prompt2token_proj_attention_multiplier should be a list of integers. | |
self.extend_prompt2token_proj_attention_multiplier = kwargs.get('extend_prompt2token_proj_attention_multiplier', 1) | |
self.prompt2token_proj_ext_attention_perturb_ratio = kwargs.get('prompt2token_proj_ext_attention_perturb_ratio', 0.1) | |
# Set model behavior configurations. | |
self.gen_neg_img_prompt = False | |
self.clip_neg_features = None | |
self.use_clip_embs = False | |
self.do_contrast_clip_embs_on_bg_features = False | |
# num_id_vecs is the output embeddings of the ID2ImgPrompt module. | |
# If there's no static image suffix embeddings, then num_id_vecs is also | |
# the number of ada embeddings returned by the subject basis generator. | |
# num_id_vecs will be set in each derived class. | |
self.num_static_img_suffix_embs = kwargs.get('num_static_img_suffix_embs', 0) | |
print(f'{self.name} Adaface uses {self.num_id_vecs} ID image embeddings and {self.num_static_img_suffix_embs} fixed image embeddings as input.') | |
self.id_img_prompt_max_length = 77 | |
self.face_id_dim = 512 | |
# clip_embedding_dim: by default it's the OpenAI CLIP embedding dim. | |
# Could be overridden by derived classes. | |
self.clip_embedding_dim = 1024 | |
self.output_dim = 768 | |
def get_id2img_learnable_modules(self): | |
raise NotImplementedError | |
def load_id2img_learnable_modules(self, id2img_learnable_modules_state_dict_list): | |
id2img_prompt_encoder_learnable_modules = self.get_id2img_learnable_modules() | |
for module, state_dict in zip(id2img_prompt_encoder_learnable_modules, id2img_learnable_modules_state_dict_list): | |
module.load_state_dict(state_dict) | |
print(f'{len(id2img_prompt_encoder_learnable_modules)} ID2ImgPrompt encoder modules loaded.') | |
# init_subj_basis_generator() can only be called after the derived class is initialized, | |
# when self.num_id_vecs, self.num_static_img_suffix_embs and self.clip_embedding_dim have been set. | |
def init_subj_basis_generator(self): | |
self.subj_basis_generator = \ | |
SubjBasisGenerator(num_id_vecs = self.num_id_vecs, | |
num_static_img_suffix_embs = self.num_static_img_suffix_embs, | |
bg_image_embedding_dim = self.clip_embedding_dim, | |
output_dim = self.output_dim, | |
placeholder_is_bg = False, | |
prompt2token_proj_grad_scale = 1, | |
bg_prompt_translator_has_to_out_proj=False) | |
def load_adaface_ckpt(self, adaface_ckpt_path): | |
ckpt = torch.load(adaface_ckpt_path, map_location='cpu') | |
string_to_subj_basis_generator_dict = ckpt["string_to_subj_basis_generator_dict"] | |
if self.subject_string not in string_to_subj_basis_generator_dict: | |
print(f"Subject '{self.subject_string}' not found in the embedding manager.") | |
breakpoint() | |
ckpt_subj_basis_generator = string_to_subj_basis_generator_dict[self.subject_string] | |
ckpt_subj_basis_generator.N_ID = self.num_id_vecs | |
# Since we directly use the subject basis generator object from the ckpt, | |
# fixing the number of static image suffix embeddings is much simpler. | |
# Otherwise if we want to load the subject basis generator from its state_dict, | |
# things are more complicated, see embedding manager's load(). | |
ckpt_subj_basis_generator.N_SFX = self.num_static_img_suffix_embs | |
# obj_proj_in and pos_embs are for non-faces. So they are useless for human faces. | |
ckpt_subj_basis_generator.obj_proj_in = None | |
ckpt_subj_basis_generator.pos_embs = None | |
# Handle differences in num_static_img_suffix_embs between the current model and the ckpt. | |
ckpt_subj_basis_generator.initialize_static_img_suffix_embs(self.num_static_img_suffix_embs, img_prompt_dim=self.output_dim) | |
# Fix missing variables in old ckpt. | |
ckpt_subj_basis_generator.patch_old_subj_basis_generator_ckpt() | |
self.subj_basis_generator.extend_prompt2token_proj_attention(\ | |
ckpt_subj_basis_generator.prompt2token_proj_attention_multipliers, -1, -1, 1, perturb_std=0) | |
ret = self.subj_basis_generator.load_state_dict(ckpt_subj_basis_generator.state_dict(), strict=False) | |
print(f"{adaface_ckpt_path}: subject basis generator loaded for '{self.name}'.") | |
print(repr(ckpt_subj_basis_generator)) | |
if ret is not None and len(ret.missing_keys) > 0: | |
print(f"Missing keys: {ret.missing_keys}") | |
if ret is not None and len(ret.unexpected_keys) > 0: | |
print(f"Unexpected keys: {ret.unexpected_keys}") | |
# extend_prompt2token_proj_attention_multiplier is an integer >= 1. | |
# TODO: extend_prompt2token_proj_attention_multiplier should be a list of integers. | |
# If extend_prompt2token_proj_attention_multiplier > 1, then after loading state_dict, | |
# extend subj_basis_generator again. | |
if self.extend_prompt2token_proj_attention_multiplier > 1: | |
# During this extension, the added noise does change the extra copies of attention weights, since they are not in the ckpt. | |
# During training, prompt2token_proj_ext_attention_perturb_ratio == 0.1. | |
# During inference, prompt2token_proj_ext_attention_perturb_ratio == 0. | |
self.subj_basis_generator.extend_prompt2token_proj_attention(\ | |
None, -1, -1, self.extend_prompt2token_proj_attention_multiplier, | |
perturb_std=self.prompt2token_proj_ext_attention_perturb_ratio) | |
self.subj_basis_generator.freeze_prompt2token_proj() | |
def get_clip_neg_features(self, BS): | |
if self.clip_neg_features is None: | |
# neg_pixel_values: [1, 3, 224, 224]. clip_neg_features is invariant to the actual image. | |
neg_pixel_values = torch.zeros([1, 3, 224, 224], device=self.clip_image_encoder.device, dtype=self.dtype) | |
# Precompute CLIP negative features for the negative image prompt. | |
self.clip_neg_features = self.clip_image_encoder(neg_pixel_values, attn_mask=None, output_hidden_states=True).hidden_states[-2] | |
clip_neg_features = self.clip_neg_features.repeat(BS, 1, 1) | |
return clip_neg_features | |
# image_objs: a list of np array / tensor / Image objects of different sizes [Hi, Wi]. | |
# If image_objs is a list of tensors, then each tensor should be [3, Hi, Wi]. | |
# If image_objs is None, then image_paths should be provided, | |
# and image_objs will be loaded from image_paths. | |
# fg_masks: None, or a list of [Hi, Wi]. | |
def extract_init_id_embeds_from_images(self, image_objs, image_paths, fg_masks=None, | |
size=(512, 512), calc_avg=False, | |
skip_non_faces=True, return_clip_embs=None, | |
do_contrast_clip_embs_on_bg_features=None, | |
verbose=False): | |
# If return_clip_embs or do_contrast_clip_embs_on_bg_features is not provided, | |
# then use their default values. | |
if return_clip_embs is None: | |
return_clip_embs = self.use_clip_embs | |
if do_contrast_clip_embs_on_bg_features is None: | |
do_contrast_clip_embs_on_bg_features = self.do_contrast_clip_embs_on_bg_features | |
# clip_image_encoder should be already put on GPU. | |
# So its .device is the device of its parameters. | |
device = self.clip_image_encoder.device | |
image_pixel_values = [] | |
all_id_embs = [] | |
faceless_img_count = 0 | |
if image_objs is None and image_paths is not None: | |
image_objs = [] | |
for image_path in image_paths: | |
image_obj = Image.open(image_path) | |
image_objs.append(image_obj) | |
print(f'Loaded {len(image_objs)} images from {image_paths[0]}...') | |
# image_objs could be a batch of images that have been collated into a tensor or np array. | |
# image_objs can also be a list of images. | |
# The code below that processes them one by one can be applied in both cases. | |
# If image_objs are a collated batch, processing them one by one will not add much overhead. | |
for idx, image_obj in enumerate(image_objs): | |
if return_clip_embs: | |
# input to clip_preprocessor: an image or a batch of images, each being PIL.Image.Image, numpy.ndarray, | |
# torch.Tensor, tf.Tensor or jax.ndarray. | |
# Different sizes of images are standardized to the same size 224*224. | |
clip_image_pixel_values = self.clip_preprocessor(images=image_obj, return_tensors="pt").pixel_values | |
image_pixel_values.append(clip_image_pixel_values) | |
# Convert tensor to numpy array. | |
if isinstance(image_obj, torch.Tensor): | |
image_obj = image_obj.cpu().numpy().transpose(1, 2, 0) | |
if isinstance(image_obj, np.ndarray): | |
image_obj = Image.fromarray(image_obj) | |
# Resize image_obj to (512, 512). The scheme is Image.NEAREST, to be consistent with | |
# PersonalizedBase dataset class. | |
image_obj, _, _ = pad_image_obj_to_square(image_obj) | |
image_np = np.array(image_obj.resize(size, Image.NEAREST)) | |
face_info = self.face_app.get(cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)) | |
if len(face_info) > 0: | |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face | |
# id_emb: [512,] | |
id_emb = torch.from_numpy(face_info.normed_embedding) | |
else: | |
faceless_img_count += 1 | |
print(f'No face detected in {image_paths[idx]}.', end=' ') | |
if not skip_non_faces: | |
print('Replace with random face embedding.') | |
# During training, use a random tensor as the face embedding. | |
id_emb = torch.randn(512) | |
else: | |
print(f'Skip.') | |
continue | |
all_id_embs.append(id_emb) | |
if verbose: | |
print(f'{len(all_id_embs)} face images identified, {faceless_img_count} faceless images.') | |
# No face is detected in the input images. | |
if len(all_id_embs) == 0: | |
return faceless_img_count, None, None | |
# all_id_embs: [BS, 512]. | |
all_id_embs = torch.stack(all_id_embs, dim=0).to(device=device, dtype=torch.float16) | |
if return_clip_embs: | |
# image_pixel_values: [BS, 3, 224, 224] | |
image_pixel_values = torch.cat(image_pixel_values, dim=0) | |
image_pixel_values = image_pixel_values.to(device=device, dtype=torch.float16) | |
if fg_masks is not None: | |
assert len(fg_masks) == len(image_objs) | |
# fg_masks is a list of masks. | |
if isinstance(fg_masks, (list, tuple)): | |
fg_masks2 = [] | |
for fg_mask in fg_masks: | |
# fg_mask: [Hi, Wi] | |
# BUG: clip_preprocessor will do central crop on images. But fg_mask is not central cropped. | |
# If the ref image is not square, then the fg_mask will not match the image. | |
# TODO: crop fg_mask and images to square before calling extract_init_id_embeds_from_images(). | |
# fg_mask2: [Hi, Wi] -> [1, 1, 224, 224] | |
fg_mask2 = torch.tensor(fg_mask, device=device, dtype=torch.float16).unsqueeze(0).unsqueeze(0) | |
fg_mask2 = F.interpolate(fg_mask2, size=image_pixel_values.shape[-2:], mode='bilinear', align_corners=False) | |
fg_masks2.append(fg_mask2) | |
# fg_masks2: [BS, 224, 224] | |
fg_masks2 = torch.cat(fg_masks2, dim=0).squeeze(1) | |
else: | |
# fg_masks is a collated batch of masks. | |
# The actual size doesn't matter, | |
# as fg_mask2 will be resized to the same size as image features | |
# (much smaller than image_pixel_values). | |
fg_masks2 = fg_masks.to(device=device, dtype=torch.float16).unsqueeze(1) | |
# F.interpolate() always return a copy, even if scale_factor=1. So we don't need to clone fg_masks2. | |
fg_masks2 = F.interpolate(fg_masks2, size=image_pixel_values.shape[-2:], mode='bilinear', align_corners=False) | |
fg_masks2 = fg_masks2.squeeze(1) | |
else: | |
# fg_mask2: [BS, 224, 224]. | |
fg_masks2 = torch.ones_like(image_pixel_values[:, 0, :, :], device=device, dtype=torch.float16) | |
clip_neg_features = self.get_clip_neg_features(BS=image_pixel_values.shape[0]) | |
with torch.no_grad(): | |
# image_fg_features: [BS, 257, 1280]. 257: 16*16 (patch_embeds) + 1 (class_embeds). | |
image_fg_dict = self.clip_image_encoder(image_pixel_values, attn_mask=fg_masks2, output_hidden_states=True) | |
# attn_mask: [BS, 1, 257] | |
image_fg_features = image_fg_dict.hidden_states[-2] | |
if image_fg_dict.attn_mask is not None: | |
image_fg_features = image_fg_features * image_fg_dict.attn_mask | |
# A negative mask is used to extract the background features. | |
# If fg_masks is None, then fg_masks2 is all ones, and bg masks is all zeros. | |
# Therefore, all pixels are masked. The extracted image_bg_features will be | |
# meaningless in this case. | |
image_bg_dict = self.clip_image_encoder(image_pixel_values, attn_mask=1-fg_masks2, output_hidden_states=True) | |
image_bg_features = image_bg_dict.hidden_states[-2] | |
# Subtract the feature bias (null features) from the bg features, to highlight the useful bg features. | |
if do_contrast_clip_embs_on_bg_features: | |
image_bg_features = image_bg_features - clip_neg_features | |
if image_bg_dict.attn_mask is not None: | |
image_bg_features = image_bg_features * image_bg_dict.attn_mask | |
# clip_fgbg_features: [BS, 514, 1280]. 514 = 257*2. | |
# all_id_embs: [BS, 512]. | |
clip_fgbg_features = torch.cat([image_fg_features, image_bg_features], dim=1) | |
else: | |
clip_fgbg_features = None | |
clip_neg_features = None | |
if calc_avg: | |
if return_clip_embs: | |
# clip_fgbg_features: [BS, 514, 1280] -> [1, 514, 1280]. | |
# all_id_embs: [BS, 512] -> [1, 512]. | |
clip_fgbg_features = clip_fgbg_features.mean(dim=0, keepdim=True) | |
clip_neg_features = clip_neg_features.mean(dim=0, keepdim=True) | |
debug = False | |
if debug and all_id_embs is not None: | |
print(image_paths) | |
calc_stats('all_id_embs', all_id_embs) | |
# Compute pairwise similarities of the embeddings. | |
all_id_embs = F.normalize(all_id_embs, p=2, dim=1) | |
pairwise_sim = torch.matmul(all_id_embs, all_id_embs.t()) | |
print('pairwise_sim:', pairwise_sim) | |
top_dir = os.path.dirname(image_paths[0]) | |
mean_emb_path = os.path.join(top_dir, "mean_emb.pt") | |
if os.path.exists(mean_emb_path): | |
mean_emb = torch.load(mean_emb_path) | |
sim_to_mean = torch.matmul(all_id_embs, mean_emb.t()) | |
print('sim_to_mean:', sim_to_mean) | |
if all_id_embs is not None: | |
id_embs = all_id_embs.mean(dim=0, keepdim=True) | |
# Without normalization, id_embs.norm(dim=1) is ~0.9. So normalization doesn't have much effect. | |
id_embs = F.normalize(id_embs, p=2, dim=-1) | |
# id_embs is None only if insightface_app is None, i.e., disabled by the user. | |
else: | |
# Don't do average of all_id_embs. | |
id_embs = all_id_embs | |
return faceless_img_count, id_embs, clip_fgbg_features | |
# This function should be implemented in derived classes. | |
# We don't plan to fine-tune the ID2ImgPrompt module. So disable the gradient computation. | |
def map_init_id_to_img_prompt_embs(self, init_id_embs, | |
clip_features=None, | |
called_for_neg_img_prompt=False): | |
raise NotImplementedError | |
# If init_id_embs/pre_clip_features is provided, then use the provided face embeddings. | |
# Otherwise, if image_paths/image_objs are provided, extract face embeddings from the images. | |
# Otherwise, we generate random face embeddings [id_batch_size, 512]. | |
def get_img_prompt_embs(self, init_id_embs, pre_clip_features, image_paths, image_objs, | |
id_batch_size, | |
skip_non_faces=True, | |
avg_at_stage=None, # id_emb, img_prompt_emb, or None. | |
perturb_at_stage=None, # id_emb, img_prompt_emb, or None. | |
perturb_std=0.0, | |
verbose=False): | |
face_image_count = 0 | |
device = self.clip_image_encoder.device | |
clip_neg_features = self.get_clip_neg_features(BS=id_batch_size) | |
if init_id_embs is None: | |
# Input images are not provided. Generate random face embeddings. | |
if image_paths is None and image_objs is None: | |
faceid_embeds_from_images = False | |
# Use random face embeddings as faceid_embeds. [BS, 512]. | |
faceid_embeds = torch.randn(id_batch_size, 512).to(device=device, dtype=torch.float16) | |
# Since it's a batch of random IDs, the CLIP features are all zeros as a placeholder. | |
# Only ConsistentID_ID2AdaPrompt will use clip_fgbg_features and clip_neg_features. | |
# Experiments show that using random clip features yields much better images than using zeros. | |
clip_fgbg_features = torch.randn(id_batch_size, 514, 1280).to(device=device, dtype=torch.float16) \ | |
if self.use_clip_embs else None | |
else: | |
# Extract face ID embeddings and CLIP features from the images. | |
faceid_embeds_from_images = True | |
faceless_img_count, faceid_embeds, clip_fgbg_features \ | |
= self.extract_init_id_embeds_from_images( \ | |
image_objs, image_paths=image_paths, size=(512, 512), | |
calc_avg=(avg_at_stage == 'id_emb'), | |
skip_non_faces=skip_non_faces, | |
verbose=verbose) | |
if image_paths is not None: | |
face_image_count = len(image_paths) - faceless_img_count | |
else: | |
face_image_count = len(image_objs) - faceless_img_count | |
else: | |
faceid_embeds_from_images = False | |
# Use the provided init_id_embs as faceid_embeds. | |
faceid_embeds = init_id_embs | |
if pre_clip_features is not None: | |
clip_fgbg_features = pre_clip_features | |
else: | |
clip_fgbg_features = None | |
if faceid_embeds.shape[0] == 1: | |
faceid_embeds = faceid_embeds.repeat(id_batch_size, 1) | |
if clip_fgbg_features is not None: | |
clip_fgbg_features = clip_fgbg_features.repeat(id_batch_size, 1, 1) | |
# If skip_non_faces, then faceid_embeds won't be None. | |
# Otherwise, if faceid_embeds_from_images, and no face images are detected, | |
# then we return Nones. | |
if faceid_embeds is None: | |
return face_image_count, None, None, None | |
if perturb_at_stage == 'id_emb' and perturb_std > 0: | |
# If id_batch_size > 1, after adding noises, the id_batch_size embeddings will be different. | |
faceid_embeds = perturb_tensor(faceid_embeds, perturb_std, perturb_std_is_relative=True, keep_norm=True) | |
if self.name == 'consistentID' or self.name == 'jointIDs': | |
clip_fgbg_features = perturb_tensor(clip_fgbg_features, perturb_std, perturb_std_is_relative=True, keep_norm=True) | |
faceid_embeds = F.normalize(faceid_embeds, p=2, dim=-1) | |
# pos_prompt_embs, neg_prompt_embs: [BS, 77, 768] or [BS, 22, 768]. | |
with torch.no_grad(): | |
pos_prompt_embs = \ | |
self.map_init_id_to_img_prompt_embs(faceid_embeds, clip_fgbg_features, | |
called_for_neg_img_prompt=False) | |
if avg_at_stage == 'img_prompt_emb': | |
pos_prompt_embs = pos_prompt_embs.mean(dim=0, keepdim=True) | |
faceid_embeds = faceid_embeds.mean(dim=0, keepdim=True) | |
if clip_fgbg_features is not None: | |
clip_fgbg_features = clip_fgbg_features.mean(dim=0, keepdim=True) | |
if perturb_at_stage == 'img_prompt_emb' and perturb_std > 0: | |
# NOTE: for simplicity, pos_prompt_embs and pos_core_prompt_emb are perturbed independently. | |
# This could cause inconsistency between pos_prompt_embs and pos_core_prompt_emb. | |
# But in practice, unless we use both pos_prompt_embs and pos_core_prompt_emb | |
# this is not an issue. But we rarely use pos_prompt_embs and pos_core_prompt_emb together. | |
pos_prompt_embs = perturb_tensor(pos_prompt_embs, perturb_std, perturb_std_is_relative=True, keep_norm=True) | |
# If faceid_embeds_from_images, and the prompt embeddings are already averaged, then | |
# we assume all images are from the same subject, and the batch dim of faceid_embeds is 1. | |
# So we need to repeat faceid_embeds. | |
if faceid_embeds_from_images and avg_at_stage is not None: | |
faceid_embeds = faceid_embeds.repeat(id_batch_size, 1) | |
pos_prompt_embs = pos_prompt_embs.repeat(id_batch_size, 1, 1) | |
if clip_fgbg_features is not None: | |
clip_fgbg_features = clip_fgbg_features.repeat(id_batch_size, 1, 1) | |
if self.gen_neg_img_prompt: | |
# Never perturb the negative prompt embeddings. | |
with torch.no_grad(): | |
neg_prompt_embs = \ | |
self.map_init_id_to_img_prompt_embs(torch.zeros_like(faceid_embeds), | |
clip_neg_features, | |
called_for_neg_img_prompt=True) | |
return face_image_count, faceid_embeds, pos_prompt_embs, neg_prompt_embs | |
else: | |
return face_image_count, faceid_embeds, pos_prompt_embs, None | |
# get_batched_img_prompt_embs() is a wrapper of get_img_prompt_embs() | |
# which is convenient for batched training. | |
# NOTE: get_batched_img_prompt_embs() should only be called during training. | |
# It is a wrapper of get_img_prompt_embs() which is convenient for batched training. | |
# If init_id_embs is None, generate random face embeddings [BS, 512]. | |
# Returns faceid_embeds, id2img_prompt_emb. | |
def get_batched_img_prompt_embs(self, batch_size, init_id_embs, pre_clip_features): | |
# pos_prompt_embs, neg_prompt_embs are generated without gradient computation. | |
# So we don't need to worry that the teacher model weights are updated. | |
return self.get_img_prompt_embs(init_id_embs=init_id_embs, | |
pre_clip_features=pre_clip_features, | |
image_paths=None, | |
image_objs=None, | |
id_batch_size=batch_size, | |
# During training, don't skip non-face images. Instead, | |
# setting skip_non_faces=False will replace them by random face embeddings. | |
skip_non_faces=False, | |
# We always assume the instances belong to different subjects. | |
# So never average the embeddings across instances. | |
avg_at_stage=None, | |
verbose=False) | |
# If img_prompt_embs is provided, we use it directly. | |
# Otherwise, if face_id_embs is provided, we use it to generate img_prompt_embs. | |
# Otherwise, if image_paths is provided, we extract face_id_embs from the images. | |
# image_paths: a list of image paths. image_folder: the parent folder name. | |
# avg_at_stage: 'id_emb', 'img_prompt_emb', or None. | |
# avg_at_stage == ada_prompt_emb usually produces the worst results. | |
# avg_at_stage == id_emb is slightly better than img_prompt_emb, but sometimes img_prompt_emb is better. | |
# p_dropout and return_zero_embs_for_dropped_encoders are only used by Joint_FaceID2AdaPrompt. | |
def generate_adaface_embeddings(self, image_paths, face_id_embs=None, img_prompt_embs=None, | |
p_dropout=0, | |
return_zero_embs_for_dropped_encoders=True, | |
avg_at_stage='id_emb', # id_emb, img_prompt_emb, or None. | |
perturb_at_stage=None, # id_emb, img_prompt_emb, or None. | |
perturb_std=0, enable_static_img_suffix_embs=False): | |
if (avg_at_stage is None) or avg_at_stage.lower() == 'none': | |
img_prompt_avg_at_stage = None | |
else: | |
img_prompt_avg_at_stage = avg_at_stage | |
if img_prompt_embs is None: | |
# Do averaging. So id_batch_size becomes 1 after averaging. | |
if img_prompt_avg_at_stage is not None: | |
id_batch_size = 1 | |
else: | |
if face_id_embs is not None: | |
id_batch_size = face_id_embs.shape[0] | |
elif image_paths is not None: | |
id_batch_size = len(image_paths) | |
else: | |
id_batch_size = 1 | |
# faceid_embeds: [BS, 512] is a batch of extracted face analysis embeddings. NOT used later. | |
# NOTE: If face_id_embs, image_paths and image_objs are all None, | |
# then get_img_prompt_embs() generates random faceid_embeds/img_prompt_embs, | |
# and each instance is different. | |
# Otherwise, if face_id_embs is provided, it's used. | |
# If not, image_paths/image_objs are used to extract face embeddings. | |
# img_prompt_embs is in the image prompt space. | |
# img_prompt_embs: [BS, 16/4, 768]. | |
face_image_count, faceid_embeds, img_prompt_embs, neg_img_prompt_embs \ | |
= self.get_img_prompt_embs(\ | |
init_id_embs=face_id_embs, | |
pre_clip_features=None, | |
# image_folder is passed only for logging purpose. | |
# image_paths contains the paths of the images. | |
image_paths=image_paths, image_objs=None, | |
id_batch_size=id_batch_size, | |
perturb_at_stage=perturb_at_stage, | |
perturb_std=perturb_std, | |
avg_at_stage=img_prompt_avg_at_stage, | |
verbose=True) | |
if face_image_count == 0: | |
return None | |
# No matter whether avg_at_stage is id_emb or img_prompt_emb, we average img_prompt_embs. | |
elif avg_at_stage is not None and avg_at_stage.lower() != 'none': | |
# img_prompt_embs: [BS, 16/4, 768] -> [1, 16/4, 768]. | |
img_prompt_embs = img_prompt_embs.mean(dim=0, keepdim=True) | |
# adaface_subj_embs: [BS, 16/4, 768]. | |
adaface_subj_embs = \ | |
self.subj_basis_generator(img_prompt_embs, clip_features=None, raw_id_embs=None, | |
out_id_embs_cfg_scale=self.out_id_embs_cfg_scale, | |
is_face=True, | |
enable_static_img_suffix_embs=enable_static_img_suffix_embs) | |
# During training, img_prompt_avg_at_stage is None, and BS >= 1. | |
# During inference, img_prompt_avg_at_stage is 'id_emb' or 'img_prompt_emb', and BS == 1. | |
if img_prompt_avg_at_stage is not None: | |
# adaface_subj_embs: [1, 16, 768] -> [16, 768] | |
adaface_subj_embs = adaface_subj_embs.squeeze(0) | |
return adaface_subj_embs | |
class Arc2Face_ID2AdaPrompt(FaceID2AdaPrompt): | |
def __init__(self, *args, **kwargs): | |
self.name = 'arc2face' | |
self.num_id_vecs = 16 | |
super().__init__(*args, **kwargs) | |
self.clip_image_encoder = CLIPVisionModelWithMask.from_pretrained('openai/clip-vit-large-patch14') | |
self.clip_preprocessor = CLIPImageProcessor.from_pretrained('openai/clip-vit-large-patch14') | |
self.clip_image_encoder.eval() | |
if self.dtype == torch.float16: | |
self.clip_image_encoder.half() | |
print(f'CLIP image encoder loaded.') | |
''' | |
{'landmark_3d_68': <insightface.model_zoo.landmark.Landmark object at 0x7f8e3f0cc190>, | |
'landmark_2d_106': <insightface.model_zoo.landmark.Landmark object at 0x7f8e3f0cc2b0>, | |
'detection': <insightface.model_zoo.retinaface.RetinaFace object at 0x7f8e3f0cc100>, | |
'genderage': <insightface.model_zoo.attribute.Attribute object at 0x7f8e3f0cc1f0>, | |
'recognition': <insightface.model_zoo.arcface_onnx.ArcFaceONNX object at 0x7f8e3f0cc0d0>} | |
''' | |
# Use the same model as ID2AdaPrompt does. | |
# FaceAnalysis will try to find the ckpt in: models/insightface/models/antelopev2. | |
# Note there's a second "model" in the path. | |
# Note DON'T use CUDAExecutionProvider, as it will hang DDP training. | |
# Seems when loading insightface onto the GPU, it will only reside on the first GPU. | |
# Then the process on the second GPU has issue to communicate with insightface on the first GPU, causing hanging. | |
self.face_app = FaceAnalysis(name='antelopev2', root='models/insightface', | |
providers=['CPUExecutionProvider']) | |
self.face_app.prepare(ctx_id=0, det_size=(512, 512)) | |
print(f'Face encoder loaded on CPU.') | |
self.text_to_image_prompt_encoder = CLIPTextModelWrapper.from_pretrained( | |
'models/arc2face', subfolder="encoder", | |
torch_dtype=self.dtype | |
) | |
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
if self.out_id_embs_cfg_scale == -1: | |
self.out_id_embs_cfg_scale = 1 | |
#### Arc2Face pipeline specific configs #### | |
self.gen_neg_img_prompt = False | |
# bg CLIP features are used by the bg subject basis generator. | |
self.use_clip_embs = True | |
self.do_contrast_clip_embs_on_bg_features = True | |
# self.num_static_img_suffix_embs is initialized in the parent class. | |
self.id_img_prompt_max_length = 22 | |
self.clip_embedding_dim = 1024 | |
self.init_subj_basis_generator() | |
if self.adaface_ckpt_path is not None: | |
self.load_adaface_ckpt(self.adaface_ckpt_path) | |
print(f"{self.name} ada prompt encoder initialized, " | |
f"ID vecs: {self.num_id_vecs}, static suffix: {self.num_static_img_suffix_embs}.") | |
# Arc2Face_ID2AdaPrompt never uses clip_features or called_for_neg_img_prompt. | |
def map_init_id_to_img_prompt_embs(self, init_id_embs, | |
clip_features=None, | |
called_for_neg_img_prompt=False): | |
''' | |
self.text_to_image_prompt_encoder: arc2face_models.py:CLIPTextModelWrapper instance. | |
init_id_embs: (N, 512) normalized Face ID embeddings. | |
''' | |
# arcface_token_id: 1014 | |
arcface_token_id = self.tokenizer.encode("id", add_special_tokens=False)[0] | |
# This step should be quite fast, and there's no need to cache the input_ids. | |
input_ids = self.tokenizer( | |
"photo of a id person", | |
truncation=True, | |
padding="max_length", | |
# In Arc2Face_ID2AdaPrompt, id_img_prompt_max_length is 22. | |
# Arc2Face's image prompt is meanlingless in tokens other than ID tokens. | |
max_length=self.id_img_prompt_max_length, | |
return_tensors="pt", | |
).input_ids.to(init_id_embs.device) | |
# input_ids: [1, 22] or [3, 22] (during training). | |
input_ids = input_ids.repeat(len(init_id_embs), 1) | |
init_id_embs = init_id_embs.to(self.dtype) | |
# face_embs_padded: [1, 512] -> [1, 768]. | |
face_embs_padded = F.pad(init_id_embs, (0, self.text_to_image_prompt_encoder.config.hidden_size - init_id_embs.shape[-1]), "constant", 0) | |
# self.text_to_image_prompt_encoder(input_ids=input_ids, ...) is called twice. The first is only to get the token embeddings (the shallowest mapping). | |
# The second call does the ordinary CLIP text encoding pass. | |
token_embs = self.text_to_image_prompt_encoder(input_ids=input_ids, return_token_embs=True) | |
token_embs[input_ids==arcface_token_id] = face_embs_padded | |
prompt_embeds = self.text_to_image_prompt_encoder( | |
input_ids=input_ids, | |
input_token_embs=token_embs, | |
return_token_embs=False | |
)[0] | |
# Restore the original dtype of prompt_embeds: float16 -> float32. | |
prompt_embeds = prompt_embeds.to(self.dtype) | |
# token 4: 'id' in "photo of a id person". | |
# 4:20 are the most important 16 embeddings that contain the subject's identity. | |
# [N, 22, 768] -> [N, 16, 768] | |
return prompt_embeds[:, 4:20] | |
def get_id2img_learnable_modules(self): | |
return [ self.text_to_image_prompt_encoder ] | |
# ConsistentID_ID2AdaPrompt is just a wrapper of ConsistentIDPipeline, so it's not an nn.Module. | |
class ConsistentID_ID2AdaPrompt(FaceID2AdaPrompt): | |
def __init__(self, pipe=None, base_model_path="models/sd15-dste8-vae.safetensors", | |
*args, **kwargs): | |
self.name = 'consistentID' | |
self.num_id_vecs = 4 | |
super().__init__(*args, **kwargs) | |
if pipe is None: | |
# The base_model_path is kind of arbitrary, as the UNet and VAE in the model | |
# are not used and will be released soon. | |
# Only the consistentID modules and bise_net are used. | |
assert base_model_path is not None, "base_model_path should be provided." | |
pipe = ConsistentIDPipeline.from_single_file(base_model_path) | |
pipe.load_ConsistentID_model(consistentID_weight_path="./models/ConsistentID/ConsistentID-v1.bin", | |
bise_net_weight_path="./models/ConsistentID/BiSeNet_pretrained_for_ConsistentID.pth") | |
pipe.to(dtype=self.dtype) | |
# Since the passed-in pipe is None, this should be called during inference, | |
# when the teacher ConsistentIDPipeline is not initialized. | |
# Therefore, we release VAE, UNet and text_encoder to save memory. | |
pipe.release_components(["unet", "vae"]) | |
# Otherwise, we share the pipeline with the teacher. | |
# So we don't release the components. | |
self.pipe = pipe | |
self.face_app = pipe.face_app | |
# ConsistentID uses 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K'. | |
self.clip_image_encoder = patch_clip_image_encoder_with_mask(pipe.clip_encoder) | |
self.clip_preprocessor = pipe.clip_preprocessor | |
self.text_to_image_prompt_encoder = pipe.text_encoder | |
self.tokenizer = pipe.tokenizer | |
self.image_proj_model = pipe.image_proj_model | |
self.clip_image_encoder.eval() | |
self.image_proj_model.eval() | |
if self.dtype == torch.float16: | |
self.clip_image_encoder.half() | |
self.image_proj_model.half() | |
if self.out_id_embs_cfg_scale == -1: | |
self.out_id_embs_cfg_scale = 6 | |
#### ConsistentID pipeline specific configs #### | |
# self.num_static_img_suffix_embs is initialized in the parent class. | |
self.gen_neg_img_prompt = True | |
self.use_clip_embs = True | |
self.do_contrast_clip_embs_on_bg_features = True | |
self.clip_embedding_dim = 1280 | |
self.s_scale = 1.0 | |
self.shortcut = False | |
self.init_subj_basis_generator() | |
if self.adaface_ckpt_path is not None: | |
self.load_adaface_ckpt(self.adaface_ckpt_path) | |
print(f"{self.name} ada prompt encoder initialized, " | |
f"ID vecs: {self.num_id_vecs}, static suffix: {self.num_static_img_suffix_embs}.") | |
def map_init_id_to_img_prompt_embs(self, init_id_embs, | |
clip_features=None, | |
called_for_neg_img_prompt=False): | |
assert init_id_embs is not None, "init_id_embs should be provided." | |
init_id_embs = init_id_embs.to(self.dtype) | |
clip_features = clip_features.to(self.dtype) | |
if not called_for_neg_img_prompt: | |
# clip_features: [BS, 514, 1280]. | |
# clip_features is provided when the function is called within | |
# ConsistentID_ID2AdaPrompt:extract_init_id_embeds_from_images(), which is | |
# image_fg_features and image_bg_features concatenated at dim=1. | |
# Therefore, we split clip_image_double_embeds into image_fg_features and image_bg_features. | |
# image_bg_features is not used in ConsistentID_ID2AdaPrompt. | |
image_fg_features, image_bg_features = clip_features.chunk(2, dim=1) | |
# clip_image_embeds: [BS, 257, 1280]. | |
clip_image_embeds = image_fg_features | |
else: | |
# clip_features is the negative image features. So we don't need to split it. | |
clip_image_embeds = clip_features | |
init_id_embs = torch.zeros_like(init_id_embs) | |
faceid_embeds = init_id_embs | |
# image_proj_model maps 1280-dim OpenCLIP embeddings to 768-dim face prompt embeddings. | |
# clip_image_embeds are used as queries to transform faceid_embeds. | |
# faceid_embeds -> kv, clip_image_embeds -> q | |
if faceid_embeds.shape[0] != clip_image_embeds.shape[0]: | |
breakpoint() | |
try: | |
global_id_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=self.shortcut, scale=self.s_scale) | |
except: | |
breakpoint() | |
return global_id_embeds | |
def get_id2img_learnable_modules(self): | |
return [ self.image_proj_model ] | |
# A wrapper for combining multiple FaceID2AdaPrompt instances. | |
class Joint_FaceID2AdaPrompt(FaceID2AdaPrompt): | |
def __init__(self, adaface_encoder_types, adaface_ckpt_paths, | |
out_id_embs_cfg_scales=None, enabled_encoders=None, | |
*args, **kwargs): | |
self.name = 'jointIDs' | |
assert len(adaface_encoder_types) > 0, "adaface_encoder_types should not be empty." | |
adaface_encoder_types2num_id_vecs = { 'arc2face': 16, 'consistentID': 4 } | |
self.encoders_num_id_vecs = [ adaface_encoder_types2num_id_vecs[encoder_type] \ | |
for encoder_type in adaface_encoder_types ] | |
self.num_id_vecs = sum(self.encoders_num_id_vecs) | |
super().__init__(*args, **kwargs) | |
self.num_sub_encoders = len(adaface_encoder_types) | |
self.id2ada_prompt_encoders = nn.ModuleList() | |
self.encoders_num_static_img_suffix_embs = [] | |
# TODO: apply adaface_encoder_cfg_scales to influence the final prompt embeddings. | |
# Now they are just placeholders. | |
if out_id_embs_cfg_scales is None: | |
# -1: use the default scale for the adaface encoder type. | |
# i.e., 6 for arc2face and 1 for consistentID. | |
self.out_id_embs_cfg_scales = [-1] * self.num_sub_encoders | |
else: | |
# Do not normalize the weights, and just use them as is. | |
self.out_id_embs_cfg_scales = out_id_embs_cfg_scales | |
# Note we don't pass the adaface_ckpt_paths to the base class, but instead, | |
# we load them once and for all in self.load_adaface_ckpt(). | |
for i, encoder_type in enumerate(adaface_encoder_types): | |
kwargs['out_id_embs_cfg_scale'] = self.out_id_embs_cfg_scales[i] | |
if encoder_type == 'arc2face': | |
encoder = Arc2Face_ID2AdaPrompt(*args, **kwargs) | |
elif encoder_type == 'consistentID': | |
encoder = ConsistentID_ID2AdaPrompt(*args, **kwargs) | |
else: | |
breakpoint() | |
self.id2ada_prompt_encoders.append(encoder) | |
self.encoders_num_static_img_suffix_embs.append(encoder.num_static_img_suffix_embs) | |
self.num_static_img_suffix_embs = sum(self.encoders_num_static_img_suffix_embs) | |
# No need to set gen_neg_img_prompt, as we don't access it in this class, but rather | |
# in the derived classes. | |
# self.gen_neg_img_prompt = True | |
# self.use_clip_embs = True | |
# self.do_contrast_clip_embs_on_bg_features = True | |
self.face_id_dims = [encoder.face_id_dim for encoder in self.id2ada_prompt_encoders] | |
self.face_id_dim = sum(self.face_id_dims) | |
# Different adaface encoders may have different clip_embedding_dim. | |
# clip_embedding_dim is only used for bg subject basis generator. | |
# Here we use the joint clip embeddings of both OpenAI CLIP and laion CLIP. | |
# Therefore, the clip_embedding_dim is the sum of the clip_embedding_dims of all adaface encoders. | |
self.clip_embedding_dims = [encoder.clip_embedding_dim for encoder in self.id2ada_prompt_encoders] | |
self.clip_embedding_dim = sum(self.clip_embedding_dims) | |
# The ctors of the derived classes have already initialized encoder.subj_basis_generator. | |
# If subj_basis_generator expansion params are specified, they are equally applied to all adaface encoders. | |
# This self.subj_basis_generator is not meant to be called as self.subj_basis_generator(), but instead, | |
# it's used as a unified interface to save/load the subj_basis_generator of all adaface encoders. | |
self.subj_basis_generator = \ | |
nn.ModuleList( [encoder.subj_basis_generator for encoder \ | |
in self.id2ada_prompt_encoders] ) | |
if adaface_ckpt_paths is not None: | |
self.load_adaface_ckpt(adaface_ckpt_paths) | |
print(f"{self.name} ada prompt encoder initialized with {self.num_sub_encoders} sub-encoders. " | |
f"ID vecs: {self.num_id_vecs}, static suffix embs: {self.num_static_img_suffix_embs}.") | |
if enabled_encoders is not None: | |
self.are_encoders_enabled = \ | |
torch.tensor([True if encoder_type in enabled_encoders else False \ | |
for encoder_type in adaface_encoder_types]) | |
if not self.are_encoders_enabled.any(): | |
print(f"All encoders are disabled, which shoudn't happen.") | |
breakpoint() | |
if self.are_encoders_enabled.sum() < self.num_sub_encoders: | |
disabled_encoders = [ encoder_type for i, encoder_type in enumerate(adaface_encoder_types) \ | |
if not self.are_encoders_enabled[i] ] | |
print(f"{len(disabled_encoders)} encoders are disabled: {disabled_encoders}.") | |
else: | |
self.are_encoders_enabled = \ | |
torch.tensor([True] * self.num_sub_encoders) | |
def load_adaface_ckpt(self, adaface_ckpt_paths): | |
# If only one adaface ckpt path is provided, then we assume it's the ckpt of the Joint_FaceID2AdaPrompt, | |
# so we dereference the list to get the actual path and load the subj_basis_generators of all adaface encoders. | |
if isinstance(adaface_ckpt_paths, (list, tuple, ListConfig)): | |
if len(adaface_ckpt_paths) == 1 and self.num_sub_encoders > 1: | |
adaface_ckpt_paths = adaface_ckpt_paths[0] | |
if isinstance(adaface_ckpt_paths, str): | |
# This is only applicable to newest ckpts of Joint_FaceID2AdaPrompt, where | |
# the ckpt_subj_basis_generator is an nn.ModuleList of multiple subj_basis_generators. | |
# Therefore, no need to patch missing variables. | |
ckpt = torch.load(adaface_ckpt_paths, map_location='cpu') | |
string_to_subj_basis_generator_dict = ckpt["string_to_subj_basis_generator_dict"] | |
if self.subject_string not in string_to_subj_basis_generator_dict: | |
print(f"Subject '{self.subject_string}' not found in the embedding manager.") | |
breakpoint() | |
ckpt_subj_basis_generators = string_to_subj_basis_generator_dict[self.subject_string] | |
for i, subj_basis_generator in enumerate(self.subj_basis_generator): | |
ckpt_subj_basis_generator = ckpt_subj_basis_generators[i] | |
# Handle differences in num_static_img_suffix_embs between the current model and the ckpt. | |
ckpt_subj_basis_generator.initialize_static_img_suffix_embs(self.encoders_num_static_img_suffix_embs[i], | |
img_prompt_dim=self.output_dim) | |
if subj_basis_generator.prompt2token_proj_attention_multipliers \ | |
== [1] * 12: | |
subj_basis_generator.extend_prompt2token_proj_attention(\ | |
ckpt_subj_basis_generator.prompt2token_proj_attention_multipliers, -1, -1, 1, perturb_std=0) | |
elif subj_basis_generator.prompt2token_proj_attention_multipliers \ | |
!= ckpt_subj_basis_generator.prompt2token_proj_attention_multipliers: | |
raise ValueError("Inconsistent prompt2token_proj_attention_multipliers.") | |
assert subj_basis_generator.prompt2token_proj_attention_multipliers \ | |
== ckpt_subj_basis_generator.prompt2token_proj_attention_multipliers, \ | |
"Inconsistent prompt2token_proj_attention_multipliers." | |
subj_basis_generator.load_state_dict(ckpt_subj_basis_generator.state_dict()) | |
# extend_prompt2token_proj_attention_multiplier is an integer >= 1. | |
# TODO: extend_prompt2token_proj_attention_multiplier should be a list of integers. | |
# If extend_prompt2token_proj_attention_multiplier > 1, then after loading state_dict, | |
# extend subj_basis_generator again. | |
if self.extend_prompt2token_proj_attention_multiplier > 1: | |
# During this extension, the added noise does change the extra copies of attention weights, since they are not in the ckpt. | |
# During training, prompt2token_proj_ext_attention_perturb_ratio == 0.1. | |
# During inference, prompt2token_proj_ext_attention_perturb_ratio == 0. | |
subj_basis_generator.extend_prompt2token_proj_attention(\ | |
None, -1, -1, self.extend_prompt2token_proj_attention_multiplier, | |
perturb_std=self.prompt2token_proj_ext_attention_perturb_ratio) | |
subj_basis_generator.freeze_prompt2token_proj() | |
print(f"{adaface_ckpt_paths}: {len(self.subj_basis_generator)} subj_basis_generators loaded for {self.name}.") | |
elif isinstance(adaface_ckpt_paths, (list, tuple, ListConfig)): | |
for i, ckpt_path in enumerate(adaface_ckpt_paths): | |
self.id2ada_prompt_encoders[i].load_adaface_ckpt(ckpt_path) | |
else: | |
breakpoint() | |
def extract_init_id_embeds_from_images(self, *args, **kwargs): | |
total_faceless_img_count = 0 | |
all_id_embs = [] | |
all_clip_fgbg_features = [] | |
id_embs_shape = None | |
clip_fgbg_features_shape = None | |
# clip_image_encoder should be already put on GPU. | |
# So its .device is the device of its parameters. | |
device = self.id2ada_prompt_encoders[0].clip_image_encoder.device | |
for i, id2ada_prompt_encoder in enumerate(self.id2ada_prompt_encoders): | |
faceless_img_count, id_embs, clip_fgbg_features = \ | |
id2ada_prompt_encoder.extract_init_id_embeds_from_images(*args, **kwargs) | |
total_faceless_img_count += faceless_img_count | |
# id_embs: [BS, 512] or [1, 512] (if calc_avg == True), or None. | |
# id_embs has the same shape across all id2ada_prompt_encoders. | |
all_id_embs.append(id_embs) | |
# clip_fgbg_features: [BS, 514, 1280/1024] or [1, 514, 1280/1024] (if calc_avg == True), or None. | |
# clip_fgbg_features has the same shape except for the last dimension across all id2ada_prompt_encoders. | |
all_clip_fgbg_features.append(clip_fgbg_features) | |
if id_embs is not None: | |
id_embs_shape = id_embs.shape | |
if clip_fgbg_features is not None: | |
clip_fgbg_features_shape = clip_fgbg_features.shape | |
num_extracted_id_embs = 0 | |
for i in range(len(all_id_embs)): | |
if all_id_embs[i] is not None: | |
# As calc_avg is the same for all id2ada_prompt_encoders, | |
# each id_embs and clip_fgbg_features should have the same shape, if they are not None. | |
if all_id_embs[i].shape != id_embs_shape: | |
print("Inconsistent ID embedding shapes.") | |
breakpoint() | |
else: | |
num_extracted_id_embs += 1 | |
else: | |
all_id_embs[i] = torch.zeros(id_embs_shape, dtype=torch.float16, device=device) | |
clip_fgbg_features_shape2 = torch.Size(clip_fgbg_features_shape[:-1] + (self.clip_embedding_dims[i],)) | |
if all_clip_fgbg_features[i] is not None: | |
if all_clip_fgbg_features[i].shape != clip_fgbg_features_shape2: | |
print("Inconsistent clip features shapes.") | |
breakpoint() | |
else: | |
all_clip_fgbg_features[i] = torch.zeros(clip_fgbg_features_shape2, | |
dtype=torch.float16, device=device) | |
# If at least one face encoder detects faces, then return the embeddings. | |
# Otherwise return None embeddings. | |
# It's possible that some face encoders detect faces, while others don't, | |
# since different face encoders use different face detection models. | |
if num_extracted_id_embs == 0: | |
return 0, None, None | |
all_id_embs = torch.cat(all_id_embs, dim=1) | |
# clip_fgbg_features: [BS, 514, 1280] or [BS, 514, 1024]. So we concatenate them along dim=2. | |
all_clip_fgbg_features = torch.cat(all_clip_fgbg_features, dim=2) | |
return total_faceless_img_count, all_id_embs, all_clip_fgbg_features | |
# init_id_embs, clip_features are never None. | |
def map_init_id_to_img_prompt_embs(self, init_id_embs, | |
clip_features=None, | |
called_for_neg_img_prompt=False): | |
if init_id_embs is None or clip_features is None: | |
breakpoint() | |
# each id_embs and clip_fgbg_features should have the same shape. | |
# If some of them were None, they have been replaced by zero embeddings. | |
all_init_id_embs = init_id_embs.split(self.face_id_dims, dim=1) | |
all_clip_features = clip_features.split(self.clip_embedding_dims, dim=2) | |
all_img_prompt_embs = [] | |
for i, id2ada_prompt_encoder in enumerate(self.id2ada_prompt_encoders): | |
img_prompt_embs = id2ada_prompt_encoder.map_init_id_to_img_prompt_embs( | |
all_init_id_embs[i], clip_features=all_clip_features[i], | |
called_for_neg_img_prompt=called_for_neg_img_prompt, | |
) | |
all_img_prompt_embs.append(img_prompt_embs) | |
all_img_prompt_embs = torch.cat(all_img_prompt_embs, dim=1) | |
return all_img_prompt_embs | |
# If init_id_embs/pre_clip_features is provided, then use the provided face embeddings. | |
# Otherwise, if image_paths/image_objs are provided, extract face embeddings from the images. | |
# Otherwise, we generate random face embeddings [id_batch_size, 512]. | |
def get_img_prompt_embs(self, init_id_embs, pre_clip_features, *args, **kwargs): | |
face_image_counts = [] | |
all_faceid_embeds = [] | |
all_pos_prompt_embs = [] | |
all_neg_prompt_embs = [] | |
faceid_embeds_shape = None | |
# clip_image_encoder should be already put on GPU. | |
# So its .device is the device of its parameters. | |
device = self.id2ada_prompt_encoders[0].clip_image_encoder.device | |
# init_id_embs, pre_clip_features could be None. If they are None, | |
# we split them into individual vectors for each id2ada_prompt_encoder. | |
if init_id_embs is not None: | |
all_init_id_embs = init_id_embs.split(self.face_id_dims, dim=1) | |
else: | |
all_init_id_embs = [None] * self.num_sub_encoders | |
if pre_clip_features is not None: | |
all_pre_clip_features = pre_clip_features.split(self.clip_embedding_dims, dim=2) | |
else: | |
all_pre_clip_features = [None] * self.num_sub_encoders | |
faceid_embeds_shape = None | |
for i, id2ada_prompt_encoder in enumerate(self.id2ada_prompt_encoders): | |
face_image_count, faceid_embeds, pos_prompt_embs, neg_prompt_embs = \ | |
id2ada_prompt_encoder.get_img_prompt_embs(all_init_id_embs[i], all_pre_clip_features[i], | |
*args, **kwargs) | |
face_image_counts.append(face_image_count) | |
all_faceid_embeds.append(faceid_embeds) | |
all_pos_prompt_embs.append(pos_prompt_embs) | |
all_neg_prompt_embs.append(neg_prompt_embs) | |
# all faceid_embeds have the same shape across all id2ada_prompt_encoders. | |
# But pos_prompt_embs and neg_prompt_embs may have different number of ID embeddings. | |
if faceid_embeds is not None: | |
faceid_embeds_shape = faceid_embeds.shape | |
if faceid_embeds_shape is None: | |
return 0, None, None, None | |
# We take the maximum face_image_count among all adaface encoders. | |
face_image_count = max(face_image_counts) | |
BS = faceid_embeds.shape[0] | |
for i in range(len(all_faceid_embeds)): | |
if all_faceid_embeds[i] is not None: | |
if all_faceid_embeds[i].shape != faceid_embeds_shape: | |
print("Inconsistent face embedding shapes.") | |
breakpoint() | |
else: | |
all_faceid_embeds[i] = torch.zeros(faceid_embeds_shape, dtype=torch.float16, device=device) | |
N_ID = self.encoders_num_id_vecs[i] | |
if all_pos_prompt_embs[i] is None: | |
# Both pos_prompt_embs and neg_prompt_embs have N_ID == num_id_vecs embeddings. | |
all_pos_prompt_embs[i] = torch.zeros((BS, N_ID, 768), dtype=torch.float16, device=device) | |
if all_neg_prompt_embs[i] is None: | |
all_neg_prompt_embs[i] = torch.zeros((BS, N_ID, 768), dtype=torch.float16, device=device) | |
all_faceid_embeds = torch.cat(all_faceid_embeds, dim=1) | |
all_pos_prompt_embs = torch.cat(all_pos_prompt_embs, dim=1) | |
all_neg_prompt_embs = torch.cat(all_neg_prompt_embs, dim=1) | |
return face_image_count, all_faceid_embeds, all_pos_prompt_embs, all_neg_prompt_embs | |
# We don't need to implement get_batched_img_prompt_embs() since the interface | |
# is fully compatible with FaceID2AdaPrompt.get_batched_img_prompt_embs(). | |
def generate_adaface_embeddings(self, image_paths, face_id_embs=None, | |
img_prompt_embs=None, p_dropout=0, | |
return_zero_embs_for_dropped_encoders=True, | |
*args, **kwargs): | |
# clip_image_encoder should be already put on GPU. | |
# So its .device is the device of its parameters. | |
device = self.id2ada_prompt_encoders[0].clip_image_encoder.device | |
is_emb_averaged = kwargs.get('avg_at_stage', None) is not None | |
BS = -1 | |
if face_id_embs is not None: | |
BS = face_id_embs.shape[0] | |
all_face_id_embs = face_id_embs.split(self.face_id_dims, dim=1) | |
else: | |
all_face_id_embs = [None] * self.num_sub_encoders | |
if img_prompt_embs is not None: | |
BS = img_prompt_embs.shape[0] if BS == -1 else BS | |
if img_prompt_embs.shape[1] != self.num_id_vecs: | |
breakpoint() | |
all_img_prompt_embs = img_prompt_embs.split(self.encoders_num_id_vecs, dim=1) | |
else: | |
all_img_prompt_embs = [None] * self.num_sub_encoders | |
if image_paths is not None: | |
BS = len(image_paths) if BS == -1 else BS | |
if BS == -1: | |
breakpoint() | |
# During training, p_dropout is 0.1. During inference, p_dropout is 0. | |
# When there are two sub-encoders, the prob of one encoder being dropped is | |
# p_dropout * 2 - p_dropout^2 = 0.18. | |
if p_dropout > 0: | |
# self.are_encoders_enabled is a global mask. | |
# are_encoders_enabled is a local mask for each batch. | |
are_encoders_enabled = torch.rand(self.num_sub_encoders) < p_dropout | |
are_encoders_enabled = are_encoders_enabled & self.are_encoders_enabled | |
# We should at least enable one encoder. | |
if not are_encoders_enabled.any(): | |
# Randomly enable an encoder with self.are_encoders_enabled[i] == True. | |
enabled_indices = torch.nonzero(self.are_encoders_enabled).squeeze(1) | |
sel_idx = torch.randint(0, len(enabled_indices), (1,)).item() | |
are_encoders_enabled[enabled_indices[sel_idx]] = True | |
else: | |
are_encoders_enabled = self.are_encoders_enabled | |
all_adaface_subj_embs = [] | |
num_available_id_vecs = 0 | |
for i, id2ada_prompt_encoder in enumerate(self.id2ada_prompt_encoders): | |
if not are_encoders_enabled[i]: | |
adaface_subj_embs = None | |
print(f"Encoder {id2ada_prompt_encoder.name} is dropped.") | |
else: | |
# ddpm.embedding_manager.train() -> id2ada_prompt_encoder.train() -> each sub-enconder's train(). | |
# -> each sub-enconder's subj_basis_generator.train(). | |
# Therefore grad for the following call is enabled. | |
adaface_subj_embs = \ | |
id2ada_prompt_encoder.generate_adaface_embeddings(image_paths, | |
all_face_id_embs[i], | |
all_img_prompt_embs[i], | |
*args, **kwargs) | |
# adaface_subj_embs: [16, 768] or [4, 768]. | |
N_ID = self.encoders_num_id_vecs[i] | |
if adaface_subj_embs is None: | |
if not return_zero_embs_for_dropped_encoders: | |
continue | |
else: | |
subj_emb_shape = (N_ID, 768) if is_emb_averaged else (BS, N_ID, 768) | |
# adaface_subj_embs is zero-filled. So N_ID is not counted as available subject embeddings. | |
adaface_subj_embs = torch.zeros(subj_emb_shape, dtype=torch.float16, device=device) | |
all_adaface_subj_embs.append(adaface_subj_embs) | |
else: | |
all_adaface_subj_embs.append(adaface_subj_embs) | |
num_available_id_vecs += N_ID | |
# No faces are found in the images, so return None embeddings. | |
# We don't want to return an all-zero embedding, which is useless. | |
if num_available_id_vecs == 0: | |
return None | |
# If id2ada_prompt_encoders are ["arc2face", "consistentID"], then | |
# during inference, we average across the batch dim. | |
# all_adaface_subj_embs[0]: [4, 768]. all_adaface_subj_embs[1]: [16, 768]. | |
# all_adaface_subj_embs: [20, 768]. | |
# during training, we don't average across the batch dim. | |
# all_adaface_subj_embs[0]: [BS, 4, 768]. all_adaface_subj_embs[1]: [BS, 16, 768]. | |
# all_adaface_subj_embs: [BS, 20, 768]. | |
all_adaface_subj_embs = torch.cat(all_adaface_subj_embs, dim=-2) | |
return all_adaface_subj_embs | |
''' | |
# For ip-adapter distillation on objects. Strictly speaking, it's not face-to-image prompts, but | |
# CLIP/DINO visual features to image prompts. | |
class Objects_Vis2ImgPrompt(nn.Module): | |
def __init__(self): | |
self.dino_encoder = ViTModel.from_pretrained('facebook/dino-vits16') | |
self.dino_encoder.eval() | |
self.dino_encoder.half() | |
self.dino_preprocess = ViTFeatureExtractor.from_pretrained('facebook/dino-vits16') | |
print(f'DINO encoder loaded.') | |
''' | |