Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.models.lora import LoRALinearLayer | |
from .functions import AttentionMLP | |
class FuseModule(nn.Module): | |
def __init__(self, embed_dim): | |
super().__init__() | |
self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False) | |
self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True) | |
self.layer_norm = nn.LayerNorm(embed_dim) | |
def fuse_fn(self, prompt_embeds, id_embeds): | |
stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1) | |
stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds | |
stacked_id_embeds = self.mlp2(stacked_id_embeds) | |
stacked_id_embeds = self.layer_norm(stacked_id_embeds) | |
return stacked_id_embeds | |
def forward( | |
self, | |
prompt_embeds, | |
id_embeds, | |
class_tokens_mask, | |
valid_id_mask, | |
) -> torch.Tensor: | |
id_embeds = id_embeds.to(prompt_embeds.dtype) | |
batch_size, max_num_inputs = id_embeds.shape[:2] # 1,5 | |
seq_length = prompt_embeds.shape[1] # 77 | |
flat_id_embeds = id_embeds.view(-1, id_embeds.shape[-2], id_embeds.shape[-1]) | |
# flat_id_embeds torch.Size([5, 1, 768]) | |
valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()] | |
# valid_id_embeds torch.Size([4, 1, 768]) | |
prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1]) # torch.Size([77, 768]) | |
class_tokens_mask = class_tokens_mask.view(-1) # torch.Size([77]) | |
valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1]) # torch.Size([4, 768]) | |
image_token_embeds = prompt_embeds[class_tokens_mask] # torch.Size([4, 768]) | |
stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds) # torch.Size([4, 768]) | |
assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}" | |
prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype)) | |
updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1) | |
return updated_prompt_embeds | |
class MLP(nn.Module): | |
def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True): | |
super().__init__() | |
if use_residual: | |
assert in_dim == out_dim | |
self.layernorm = nn.LayerNorm(in_dim) | |
self.fc1 = nn.Linear(in_dim, hidden_dim) | |
self.fc2 = nn.Linear(hidden_dim, out_dim) | |
self.use_residual = use_residual | |
self.act_fn = nn.GELU() | |
def forward(self, x): | |
residual = x | |
x = self.layernorm(x) | |
x = self.fc1(x) | |
x = self.act_fn(x) | |
x = self.fc2(x) | |
if self.use_residual: | |
x = x + residual | |
return x | |
class FacialEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.visual_projection = AttentionMLP() | |
self.fuse_module = FuseModule(768) | |
def forward(self, prompt_embeds, multi_image_embeds, class_tokens_mask, valid_id_mask): | |
bs, num_inputs, token_length, image_dim = multi_image_embeds.shape | |
multi_image_embeds_view = multi_image_embeds.view(bs * num_inputs, token_length, image_dim) | |
id_embeds = self.visual_projection(multi_image_embeds_view) # torch.Size([5, 1, 768]) | |
id_embeds = id_embeds.view(bs, num_inputs, 1, -1) | |
# fuse_module replaces the class tokens in prompt_embeds with the fused (id_embeds, prompt_embeds[class_tokens_mask]) | |
# whose indices are specified by class_tokens_mask. | |
updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask, valid_id_mask) | |
return updated_prompt_embeds | |
class Consistent_AttProcessor(nn.Module): | |
def __init__( | |
self, | |
hidden_size=None, | |
cross_attention_dim=None, | |
rank=4, | |
network_alpha=None, | |
lora_scale=1.0, | |
): | |
super().__init__() | |
self.rank = rank | |
self.lora_scale = lora_scale | |
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) | |
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class Consistent_IPAttProcessor(nn.Module): | |
def __init__( | |
self, | |
hidden_size, | |
cross_attention_dim=None, | |
rank=4, | |
network_alpha=None, | |
lora_scale=1.0, | |
scale=1.0, | |
num_tokens=4): | |
super().__init__() | |
self.rank = rank | |
self.lora_scale = lora_scale | |
self.num_tokens = num_tokens | |
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) | |
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) | |
self.hidden_size = hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
for module in [self.to_q_lora, self.to_k_lora, self.to_v_lora, self.to_out_lora, self.to_k_ip, self.to_v_ip]: | |
for param in module.parameters(): | |
param.requires_grad = False | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
scale=1.0, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
else: | |
end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
encoder_hidden_states, ip_hidden_states = ( | |
encoder_hidden_states[:, :end_pos, :], | |
encoder_hidden_states[:, end_pos:, :], | |
) | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
ip_key = self.to_k_ip(ip_hidden_states) | |
ip_value = self.to_v_ip(ip_hidden_states) | |
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
ip_hidden_states = F.scaled_dot_product_attention( | |
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
ip_hidden_states = ip_hidden_states.to(query.dtype) | |
hidden_states = hidden_states + self.scale * ip_hidden_states | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states |