Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/python | |
# -*- encoding: utf-8 -*- | |
from logger import setup_logger | |
import BiSeNet | |
from face_dataset import FaceMask | |
import torch | |
import torch.nn as nn | |
from torch.utils.data import DataLoader | |
import torch.nn.functional as F | |
import torch.distributed as dist | |
import os | |
import os.path as osp | |
import logging | |
import time | |
import numpy as np | |
from tqdm import tqdm | |
import math | |
from PIL import Image | |
import torchvision.transforms as transforms | |
import cv2 | |
def vis_parsing_maps(im, parsing_anno, stride, save_im=False, save_path='vis_results/parsing_map_on_im.jpg'): | |
# Colors for all 20 parts | |
part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], | |
[255, 0, 85], [255, 0, 170], | |
[0, 255, 0], [85, 255, 0], [170, 255, 0], | |
[0, 255, 85], [0, 255, 170], | |
[0, 0, 255], [85, 0, 255], [170, 0, 255], | |
[0, 85, 255], [0, 170, 255], | |
[255, 255, 0], [255, 255, 85], [255, 255, 170], | |
[255, 0, 255], [255, 85, 255], [255, 170, 255], | |
[0, 255, 255], [85, 255, 255], [170, 255, 255]] | |
im = np.array(im) | |
vis_im = im.copy().astype(np.uint8) | |
vis_parsing_anno = parsing_anno.copy().astype(np.uint8) | |
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST) | |
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255 | |
num_of_class = np.max(vis_parsing_anno) | |
for pi in range(1, num_of_class + 1): | |
index = np.where(vis_parsing_anno == pi) | |
vis_parsing_anno_color[index[0], index[1], :] = part_colors[pi] | |
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8) | |
# print(vis_parsing_anno_color.shape, vis_im.shape) | |
vis_im = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0) | |
# Save result or not | |
if save_im: | |
cv2.imwrite(save_path, vis_im, [int(cv2.IMWRITE_JPEG_QUALITY), 100]) | |
# return vis_im | |
def evaluate(respth='./res/test_res', dspth='./data', cp='model_final_diss.pth'): | |
if not os.path.exists(respth): | |
os.makedirs(respth) | |
n_classes = 19 | |
net = BiSeNet(n_classes=n_classes) | |
net.cuda() | |
save_pth = osp.join('res/cp', cp) | |
net.load_state_dict(torch.load(save_pth)) | |
net.eval() | |
to_tensor = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
]) | |
with torch.no_grad(): | |
for image_path in os.listdir(dspth): | |
img = Image.open(osp.join(dspth, image_path)) | |
image = img.resize((512, 512), Image.BILINEAR) | |
img = to_tensor(image) | |
img = torch.unsqueeze(img, 0) | |
img = img.cuda() | |
out = net(img)[0] | |
parsing = out.squeeze(0).cpu().numpy().argmax(0) | |
vis_parsing_maps(image, parsing, stride=1, save_im=True, save_path=osp.join(respth, image_path)) | |
if __name__ == "__main__": | |
setup_logger('./res') | |
evaluate() | |