Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,624 Bytes
02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b b402b3c ad88a0b 61fbdeb ad88a0b 02cc20b ad88a0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from diffusers import UNet2DConditionModel
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput
from transformers import CLIPVisionModel
from dataclasses import dataclass
from typing import Optional, Tuple
from transformers.utils import ModelOutput
import numpy as np
import argparse
from ConsistentID.lib.pipeline_ConsistentID import ConsistentIDPipeline
from diffusers import (
UNet2DConditionModel,
DDIMScheduler,
)
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
# perturb_tensor() adds a fixed amount of noise to the tensor.
def perturb_tensor(ts, perturb_std, perturb_std_is_relative=True, keep_norm=False,
std_dim=-1, norm_dim=-1, verbose=True):
orig_ts = ts
if perturb_std_is_relative:
ts_std_mean = ts.std(dim=std_dim).mean().detach()
perturb_std *= ts_std_mean
# ts_std_mean: 50~80 for unnormalized images, perturb_std: 2.5-4 for 0.05 noise.
if verbose:
print(f"ts_std_mean: {ts_std_mean:.03f}, perturb_std: {perturb_std:.03f}")
noise = torch.randn_like(ts) * perturb_std
if keep_norm:
orig_norm = ts.norm(dim=norm_dim, keepdim=True)
ts = ts + noise
new_norm = ts.norm(dim=norm_dim, keepdim=True).detach()
ts = ts * orig_norm / (new_norm + 1e-8)
else:
ts = ts + noise
if verbose:
print(f"Correlations between new and original tensors: {F.cosine_similarity(ts.flatten(), orig_ts.flatten(), dim=0).item():.03f}")
return ts
def perturb_np_array(np_array, perturb_std, perturb_std_is_relative=True, std_dim=-1):
ts = torch.from_numpy(np_array).to(dtype=torch.float32)
ts = perturb_tensor(ts, perturb_std, perturb_std_is_relative, std_dim=std_dim)
return ts.numpy().astype(np_array.dtype)
def calc_stats(emb_name, embeddings, mean_dim=0):
print("%s:" %emb_name)
repeat_count = [1] * embeddings.ndim
repeat_count[mean_dim] = embeddings.shape[mean_dim]
# Average across the mean_dim dim.
# Make emb_mean the same size as embeddings, as required by F.l1_loss.
emb_mean = embeddings.mean(mean_dim, keepdim=True).repeat(repeat_count)
l1_loss = F.l1_loss(embeddings, emb_mean)
# F.l2_loss doesn't take sqrt. So the loss is very small.
# Compute it manually.
l2_loss = ((embeddings - emb_mean) ** 2).mean().sqrt()
norms = torch.norm(embeddings, dim=1).detach().cpu().numpy()
print("L1: %.4f, L2: %.4f" %(l1_loss.item(), l2_loss.item()))
print("Norms: min: %.4f, max: %.4f, mean: %.4f, std: %.4f" %(norms.min(), norms.max(), norms.mean(), norms.std()))
# Revised from RevGrad, by removing the grad negation.
class ScaleGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, input_, alpha_, debug=False):
ctx.save_for_backward(alpha_, debug)
output = input_
if debug:
print(f"input: {input_.abs().mean().item()}")
return output
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
# saved_tensors returns a tuple of tensors.
alpha_, debug = ctx.saved_tensors
if ctx.needs_input_grad[0]:
grad_output2 = grad_output * alpha_
if debug:
print(f"grad_output2: {grad_output2.abs().mean().item()}")
else:
grad_output2 = None
return grad_output2, None, None
class GradientScaler(nn.Module):
def __init__(self, alpha=1., debug=False, *args, **kwargs):
"""
A gradient scaling layer.
This layer has no parameters, and simply scales the gradient in the backward pass.
"""
super().__init__(*args, **kwargs)
self._alpha = torch.tensor(alpha, requires_grad=False)
self._debug = torch.tensor(debug, requires_grad=False)
def forward(self, input_):
_debug = self._debug if hasattr(self, '_debug') else False
return ScaleGrad.apply(input_, self._alpha.to(input_.device), _debug)
def gen_gradient_scaler(alpha, debug=False):
if alpha == 1:
return nn.Identity()
if alpha > 0:
return GradientScaler(alpha, debug=debug)
else:
assert alpha == 0
# Don't use lambda function here, otherwise the object can't be pickled.
return torch.detach
def pad_image_obj_to_square(image_obj, new_size=-1):
# Remove alpha channel if it exists.
if image_obj.mode == 'RGBA':
image_obj = image_obj.convert('RGB')
# Pad input to be width == height
width, height = orig_size = image_obj.size
new_width, new_height = max(width, height), max(width, height)
if width != height:
if width > height:
pads = (0, (width - height) // 2)
elif height > width:
pads = ((height - width) // 2, 0)
square_image_obj = Image.new("RGB", (new_width, new_height))
# pads indicates the upper left corner to paste the input.
square_image_obj.paste(image_obj, pads)
#square_image_obj = square_image_obj.resize((512, 512))
print(f"{width}x{height} -> {new_width}x{new_height} -> {square_image_obj.size}")
long_short_ratio = max(width, height) / min(width, height)
else:
square_image_obj = image_obj
pads = (0, 0)
long_short_ratio = 1
if new_size > 0:
# Resize the shorter edge to 512.
square_image_obj = square_image_obj.resize([int(new_size * long_short_ratio), int(new_size * long_short_ratio)])
return square_image_obj, pads, orig_size
class UNetEnsemble(nn.Module):
# The first unet is the unet already loaded in a pipeline.
def __init__(self, unets, unet_types, extra_unet_dirpaths, unet_weights=None, device='cuda', torch_dtype=torch.float16):
super().__init__()
self.unets = nn.ModuleList()
if unets is not None:
self.unets += [ unet.to(device) for unet in unets ]
if unet_types is not None:
for unet_type in unet_types:
if unet_type == "arc2face":
from adaface.arc2face_models import create_arc2face_pipeline
unet = create_arc2face_pipeline(unet_only=True)
elif unet_type == "consistentID":
unet = create_consistentid_pipeline(unet_only=True)
else:
breakpoint()
self.unets.append(unet.to(device=device))
if extra_unet_dirpaths is not None:
for unet_path in extra_unet_dirpaths:
unet = UNet2DConditionModel.from_pretrained(unet_path, torch_dtype=torch_dtype)
self.unets.append(unet.to(device=device))
if unet_weights is None:
unet_weights = [1.] * len(self.unets)
elif len(self.unets) < len(unet_weights):
unet_weights = unet_weights[:len(self.unets)]
elif len(self.unets) > len(unet_weights):
breakpoint()
unet_weights = torch.tensor(unet_weights, dtype=torch_dtype)
unet_weights = unet_weights / unet_weights.sum()
self.unet_weights = nn.Parameter(unet_weights, requires_grad=False)
print(f"UNetEnsemble: {len(self.unets)} UNets loaded with weights: {self.unet_weights.data.cpu().numpy()}")
# Set these fields to be compatible with diffusers.
self.dtype = self.unets[0].dtype
self.device = self.unets[0].device
self.config = self.unets[0].config
def forward(self, *args, **kwargs):
return_dict = kwargs.get('return_dict', True)
teacher_contexts = kwargs.pop('encoder_hidden_states', None)
# Only one teacher_context is provided. That means all unets will use the same teacher_context.
# We repeat the teacher_contexts to match the number of unets.
if not isinstance(teacher_contexts, (list, tuple)):
teacher_contexts = [teacher_contexts]
if len(teacher_contexts) == 1 and len(self.unets) > 1:
teacher_contexts = teacher_contexts * len(self.unets)
samples = []
for unet, teacher_context in zip(self.unets, teacher_contexts):
sample = unet(encoder_hidden_states=teacher_context, *args, **kwargs)
if not return_dict:
sample = sample[0]
else:
sample = sample.sample
samples.append(sample)
samples = torch.stack(samples, dim=0)
unet_weights = self.unet_weights.reshape(-1, *([1] * (samples.ndim - 1)))
sample = (samples * unet_weights).sum(dim=0)
if not return_dict:
return (sample,)
else:
return UNet2DConditionOutput(sample=sample)
def create_consistentid_pipeline(base_model_path="models/sd15-dste8-vae.safetensors",
dtype=torch.float16, unet_only=False):
pipe = ConsistentIDPipeline.from_single_file(
base_model_path,
torch_dtype=dtype,
)
# consistentID specific modules are still in fp32. Will be converted to fp16
# later with .to(device, torch_dtype) by the caller.
pipe.load_ConsistentID_model(
consistentID_weight_path="./models/ConsistentID/ConsistentID-v1.bin",
bise_net_weight_path="./models/ConsistentID/BiSeNet_pretrained_for_ConsistentID.pth",
)
# We load the pipeline first, then use the unet in the pipeline.
# Since the pipeline initialization will load LoRA into the unet,
# now we have the unet with LoRA loaded.
if unet_only:
# We release text_encoder and VAE to save memory.
pipe.release_components(["text_encoder", "vae"])
return pipe.unet
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
pipe.scheduler = noise_scheduler
return pipe
@dataclass
class BaseModelOutputWithPooling2(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) after further processing
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
the classification token after processing through a linear layer and a tanh activation function. The linear
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
attn_mask: Optional[torch.FloatTensor] = None
# Revised from CLIPVisionTransformer to support attention mask.
# self: a CLIPVisionTransformer instance.
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/modeling_clip.py#L821
# pixel_values: preprocessed B*C*H*W images. [BS, 3, 224, 224]
# attn_mask: B*H*W attention mask.
def CLIPVisionTransformer_forward_with_mask(self, pixel_values = None, attn_mask=None,
output_attentions = None,
output_hidden_states = None, return_dict = None):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Visual tokens are flattended in embeddings().
# self.embeddings: CLIPVisionEmbeddings.
# hidden_states: [BS, 257, 1280]. 257: 16*16 (patch_embeds) + 1 (class_embeds).
# 16*16 is output from Conv2d(3, 1280, kernel_size=(14, 14), stride=(14, 14), bias=False).
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
if attn_mask is not None:
# feat_edge_size: 16.
feat_edge_size = np.sqrt(hidden_states.shape[1] - 1).astype(int)
# attn_mask: [BS, 512, 512] -> [BS, 1, 16, 16].
attn_mask = F.interpolate(attn_mask.unsqueeze(1), size=(feat_edge_size, feat_edge_size), mode='nearest')
# Flatten the mask: [BS, 1, 16, 16] => [BS, 1, 256].
attn_mask = attn_mask.flatten(2)
# Prepend 1 to the mask: [BS, 1, 256] => [BS, 1, 257].
# This 1 corresponds to class_embeds, which is always attended to.
attn_mask = torch.cat([torch.ones_like(attn_mask[:, :, :1]), attn_mask], dim=-1)
attn_mask_pairs = torch.matmul(attn_mask.transpose(-1, -2), attn_mask).unsqueeze(1)
else:
attn_mask_pairs = None
# encoder: CLIPEncoder.
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
# New feature: (***The official documentation is wrong***)
# attention_mask (`torch.Tensor` of shape `(batch_size, 1, sequence_length, sequence_length)`, *optional*):
# Mask to avoid performing attention on pairs of token. Mask values selected in `[0, 1]`:
# - 1 for pairs that are **not masked**,
# - 0 for pairs that are **masked**.
# attention_mask is eventually used by CLIPEncoderLayer:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/modeling_clip.py#L370
attention_mask=attn_mask_pairs,
output_attentions=output_attentions, # False
output_hidden_states=output_hidden_states, # True
return_dict=return_dict, # True
)
# last_hidden_state: [BS, 257, 1280]
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
# return_dict is True.
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling2(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
# Newly added: return resized flattened attention mask.
# [BS, 1, 257] -> [BS, 257, 1]
attn_mask=attn_mask.permute(0, 2, 1) if attn_mask is not None else None
)
def CLIPVisionModel_forward_with_mask(self, pixel_values = None, attn_mask = None, output_attentions = None,
output_hidden_states = None, return_dict = None):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
attn_mask=attn_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# patch_clip_image_encoder_with_mask() is applicable to both CLIPVisionModel and CLIPVisionModelWithProjection.
def patch_clip_image_encoder_with_mask(clip_image_encoder):
clip_image_encoder.vision_model.forward = CLIPVisionTransformer_forward_with_mask.__get__(clip_image_encoder.vision_model)
clip_image_encoder.forward = CLIPVisionModel_forward_with_mask.__get__(clip_image_encoder)
return clip_image_encoder
class CLIPVisionModelWithMask(CLIPVisionModel):
def __init__(self, config):
super().__init__(config)
# Replace vision_model.forward() with the new one that supports mask.
patch_clip_image_encoder_with_mask(self)
|