File size: 29,746 Bytes
ad88a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
import cv2
import PIL
import numpy as np 
from PIL import Image
import torch
from torchvision import transforms
from insightface.app import FaceAnalysis 
### insight-face installation can be found at https://github.com/deepinsight/insightface
from safetensors import safe_open
from huggingface_hub.utils import validate_hf_hub_args
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from .functions import insert_markers_to_prompt, masks_for_unique_values, apply_mask_to_raw_image, tokenize_and_mask_noun_phrases_ends, prepare_image_token_idx
from .functions import ProjPlusModel, masks_for_unique_values
from .attention import Consistent_IPAttProcessor, Consistent_AttProcessor, FacialEncoder
from easydict import EasyDict as edict
from huggingface_hub import hf_hub_download
### Model can be imported from https://github.com/zllrunning/face-parsing.PyTorch?tab=readme-ov-file
### We use the ckpt of 79999_iter.pth: https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812
### Thanks for the open source of face-parsing model.
from .BiSeNet.model import BiSeNet
import os

PipelineImageInput = Union[
    PIL.Image.Image,
    torch.FloatTensor,
    List[PIL.Image.Image],
    List[torch.FloatTensor],
]

### Download the pretrained model from huggingface and put it locally, then place the model in a local directory and specify the directory location.
class ConsistentIDPipeline(StableDiffusionPipeline):
    # to() should be only called after all modules are loaded.
    def to(
        self,
        torch_device: Optional[Union[str, torch.device]] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        super().to(torch_device,                dtype=dtype)
        self.bise_net.to(torch_device,          dtype=dtype)
        self.clip_encoder.to(torch_device,      dtype=dtype)
        self.image_proj_model.to(torch_device,  dtype=dtype)
        self.FacialEncoder.to(torch_device,     dtype=dtype)
        # If the unet is not released, the ip_layers should be moved to the specified device and dtype.
        if not isinstance(self.unet, edict):
            self.ip_layers.to(torch_device,     dtype=dtype)
        return self

    @validate_hf_hub_args
    def load_ConsistentID_model(
        self,
        consistentID_weight_path:   str,
        bise_net_weight_path:       str,
        trigger_word_facial:        str = '<|facial|>',
        # A CLIP ViT-H/14 model trained with the LAION-2B English subset of LAION-5B using OpenCLIP.
        # output dim: 1280.
        image_encoder_path:         str = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K',  
        torch_dtype = torch.float16,
        num_tokens = 4,
        lora_rank= 128,
        **kwargs,
    ):
        self.lora_rank = lora_rank 
        self.torch_dtype = torch_dtype
        self.num_tokens = num_tokens
        self.set_ip_adapter()
        self.image_encoder_path = image_encoder_path
        self.clip_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path)
        self.clip_preprocessor  = CLIPImageProcessor()
        self.id_image_processor = CLIPImageProcessor()
        self.crop_size = 512

        # face_app: FaceAnalysis object
        self.face_app = FaceAnalysis(name="buffalo_l", root='models/insightface', providers=['CPUExecutionProvider'])
        # The original det_size=(640, 640) is too large and face_app often fails to detect faces.
        self.face_app.prepare(ctx_id=0, det_size=(512, 512))

        if not os.path.exists(consistentID_weight_path):
            ### Download pretrained models
            hf_hub_download(repo_id="JackAILab/ConsistentID", repo_type="model",
                            filename=os.path.basename(consistentID_weight_path), 
                            local_dir=os.path.dirname(consistentID_weight_path))
        if not os.path.exists(bise_net_weight_path):
            hf_hub_download(repo_id="JackAILab/ConsistentID", 
                            filename=os.path.basename(bise_net_weight_path), 
                            local_dir=os.path.dirname(bise_net_weight_path))

        bise_net = BiSeNet(n_classes = 19)
        bise_net.load_state_dict(torch.load(bise_net_weight_path, map_location="cpu"))
        bise_net.eval()
        self.bise_net = bise_net

        # Colors for all 20 parts
        self.part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0],
                            [255, 0, 85], [255, 0, 170],
                            [0, 255, 0], [85, 255, 0], [170, 255, 0],
                            [0, 255, 85], [0, 255, 170],
                            [0, 0, 255], [85, 0, 255], [170, 0, 255],
                            [0, 85, 255], [0, 170, 255],
                            [255, 255, 0], [255, 255, 85], [255, 255, 170],
                            [255, 0, 255], [255, 85, 255], [255, 170, 255],
                            [0, 255, 255], [85, 255, 255], [170, 255, 255]]

        # image_proj_model maps 1280-dim OpenCLIP embeddings to 768-dim face prompt embeddings.
        self.image_proj_model = ProjPlusModel(
            cross_attention_dim=self.unet.config.cross_attention_dim, 
            id_embeddings_dim=512,
            clip_embeddings_dim=self.clip_encoder.config.hidden_size, 
            num_tokens=self.num_tokens,  # 4 - inspirsed by IPAdapter and Midjourney
        )
        self.FacialEncoder = FacialEncoder()

        if consistentID_weight_path.endswith(".safetensors"):
            state_dict = {"id_encoder": {}, "lora_weights": {}}
            with safe_open(consistentID_weight_path, framework="pt", device="cpu") as f:
                ### TODO safetensors add
                for key in f.keys():
                    if key.startswith("FacialEncoder."):
                        state_dict["FacialEncoder"][key.replace("FacialEncoder.", "")] = f.get_tensor(key)
                    elif key.startswith("image_proj."):
                        state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
        else:
            state_dict = torch.load(consistentID_weight_path, map_location="cpu")
            
        self.trigger_word_facial = trigger_word_facial

        self.FacialEncoder.load_state_dict(state_dict["FacialEncoder"], strict=True)
        self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
        self.ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
        self.ip_layers.load_state_dict(state_dict["adapter_modules"], strict=True)
        print(f"Successfully loaded weights from checkpoint")

        # Add trigger word token
        if self.tokenizer is not None: 
            self.tokenizer.add_tokens([self.trigger_word_facial], special_tokens=True)

    def set_ip_adapter(self):
        unet = self.unet
        attn_procs = {}
        for name in unet.attn_processors.keys():
            cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
            if name.startswith("mid_block"):
                hidden_size = unet.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = unet.config.block_out_channels[block_id]
            if cross_attention_dim is None:
                attn_procs[name] = Consistent_AttProcessor(
                    hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
                )
            else:
                attn_procs[name] = Consistent_IPAttProcessor(
                    hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
                )
        
        unet.set_attn_processor(attn_procs)

    @torch.inference_mode()
    # parsed_image_parts2 is a batched tensor of parsed_image_parts with bs=1. It only contains the facial areas of one input image.
    # clip_encoder maps image parts to image-space diffusion prompts.
    # Then the facial class token embeddings are replaced with the fused (multi_facial_embeds, prompt_embeds[class_tokens_mask]).
    def extract_local_facial_embeds(self, prompt_embeds, uncond_prompt_embeds, parsed_image_parts2, 
                                    facial_token_masks, valid_facial_token_idx_mask, calc_uncond=True):
        
        hidden_states = []
        uncond_hidden_states = []
        for parsed_image_parts in parsed_image_parts2:
            hidden_state = self.clip_encoder(parsed_image_parts.to(self.device, dtype=self.torch_dtype), output_hidden_states=True).hidden_states[-2]
            uncond_hidden_state = self.clip_encoder(torch.zeros_like(parsed_image_parts, dtype=self.torch_dtype).to(self.device), output_hidden_states=True).hidden_states[-2]
            hidden_states.append(hidden_state)
            uncond_hidden_states.append(uncond_hidden_state)
        multi_facial_embeds = torch.stack(hidden_states)       
        uncond_multi_facial_embeds = torch.stack(uncond_hidden_states)   

        # conditional prompt.
        # FacialEncoder maps multi_facial_embeds to facial ID embeddings, and replaces the class tokens in prompt_embeds 
        # with the fused (facial ID embeddings, prompt_embeds[class_tokens_mask]).
        # multi_facial_embeds: [1, 5, 257, 1280].
        facial_prompt_embeds = self.FacialEncoder(prompt_embeds, multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)  

        if not calc_uncond:
            return facial_prompt_embeds, None
        # unconditional prompt.
        uncond_facial_prompt_embeds = self.FacialEncoder(uncond_prompt_embeds, uncond_multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)  

        return facial_prompt_embeds, uncond_facial_prompt_embeds        

    @torch.inference_mode()
    # Extrat OpenCLIP embeddings from the input image and map them to face prompt embeddings.
    def extract_global_id_embeds(self, face_image_obj, s_scale=1.0, shortcut=False):
        clip_image_ts = self.clip_preprocessor(images=face_image_obj, return_tensors="pt").pixel_values
        clip_image_ts = clip_image_ts.to(self.device, dtype=self.torch_dtype)
        clip_image_embeds = self.clip_encoder(clip_image_ts, output_hidden_states=True).hidden_states[-2]
        uncond_clip_image_embeds = self.clip_encoder(torch.zeros_like(clip_image_ts), output_hidden_states=True).hidden_states[-2]

        faceid_embeds = self.extract_faceid(face_image_obj)
        faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
        # image_proj_model maps 1280-dim OpenCLIP embeddings to 768-dim face prompt embeddings.
        # clip_image_embeds are used as queries to transform faceid_embeds.
        # faceid_embeds -> kv, clip_image_embeds -> q
        global_id_embeds        = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
        uncond_global_id_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
        
        return global_id_embeds, uncond_global_id_embeds

    def set_scale(self, scale):
        for attn_processor in self.pipe.unet.attn_processors.values():
            if isinstance(attn_processor, Consistent_IPAttProcessor):
                attn_processor.scale = scale

    @torch.inference_mode()
    def extract_faceid(self, face_image_obj):
        faceid_image = np.array(face_image_obj)
        faces = self.face_app.get(faceid_image)
        if faces==[]:
            faceid_embeds = torch.zeros_like(torch.empty((1, 512)))
        else:
            faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)

        return faceid_embeds

    @torch.inference_mode()
    def parse_face_mask(self, raw_image_refer):

        to_tensor = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])
        to_pil = transforms.ToPILImage()

        with torch.no_grad():
            image = raw_image_refer.resize((512, 512), Image.BILINEAR)
            image_resize_PIL = image
            img = to_tensor(image)
            img = torch.unsqueeze(img, 0)
            img = img.to(self.device, dtype=self.torch_dtype)
            out = self.bise_net(img)[0]
            parsing_anno = out.squeeze(0).cpu().numpy().argmax(0)
        
        im = np.array(image_resize_PIL)
        vis_im = im.copy().astype(np.uint8)
        stride=1
        vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
        vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST)
        vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255

        num_of_class = np.max(vis_parsing_anno)

        for pi in range(1, num_of_class + 1): # num_of_class=17 pi=1~16
            index = np.where(vis_parsing_anno == pi) 
            vis_parsing_anno_color[index[0], index[1], :] = self.part_colors[pi] 

        vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8)
        vis_parsing_anno_color = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0)

        return vis_parsing_anno_color, vis_parsing_anno

    @torch.inference_mode()
    def extract_facemask(self, input_image_obj):
        vis_parsing_anno_color, vis_parsing_anno = self.parse_face_mask(input_image_obj)
        parsing_mask_list = masks_for_unique_values(vis_parsing_anno) 

        key_parsing_mask_dict = {}
        key_list = ["Face", "Left_Ear", "Right_Ear", "Left_Eye", "Right_Eye", "Nose", "Upper_Lip", "Lower_Lip"]
        processed_keys = set()
        for key, mask_image in parsing_mask_list.items():
            if key in key_list:
                if "_" in key:
                    prefix = key.split("_")[1]
                    if prefix in processed_keys:                   
                        continue
                    else:            
                        key_parsing_mask_dict[key] = mask_image 
                        processed_keys.add(prefix)  
            
                key_parsing_mask_dict[key] = mask_image            

        return key_parsing_mask_dict, vis_parsing_anno_color

    def augment_prompt_with_trigger_word(
        self,
        prompt: str,
        face_caption: str,
        key_parsing_mask_dict = None,
        facial_token = "<|facial|>",
        max_num_facials = 5,
        num_id_images: int = 1,
        device: Optional[torch.device] = None,
    ):
        device = device or self._execution_device

        # face_caption_align: 'The person has one nose <|facial|>, two ears <|facial|>, two eyes <|facial|>, and a mouth <|facial|>, '
        face_caption_align, key_parsing_mask_dict_align = insert_markers_to_prompt(face_caption, key_parsing_mask_dict) 
        
        prompt_face = prompt + " Detail: " + face_caption_align

        max_text_length=330      
        if len(self.tokenizer(prompt_face, max_length=self.tokenizer.model_max_length, 
                              padding="max_length", truncation=False, return_tensors="pt").input_ids[0]) != 77:
            # Put face_caption_align at the beginning of the prompt, so that the original prompt is truncated,
            # but the face_caption_align is well kept.
            prompt_face = "Detail: " + face_caption_align + " Caption:" + prompt

        # Remove "<|facial|>" from prompt_face.
        # augmented_prompt: 'A person, police officer, half body shot Detail: 
        # The person has one nose , two ears , two eyes , and a mouth , '
        augmented_prompt = prompt_face.replace("<|facial|>", "")
        tokenizer = self.tokenizer
        facial_token_id = tokenizer.convert_tokens_to_ids(facial_token)
        image_token_id = None

        # image_token_id: the token id of "<|image|>". Disabled, as it's set to None.
        # facial_token_id: the token id of "<|facial|>".
        clean_input_id, image_token_mask, facial_token_mask = \
            tokenize_and_mask_noun_phrases_ends(prompt_face, image_token_id, facial_token_id, tokenizer) 

        image_token_idx, image_token_idx_mask, facial_token_idx, facial_token_idx_mask = \
            prepare_image_token_idx(image_token_mask, facial_token_mask, num_id_images, max_num_facials)

        return augmented_prompt, clean_input_id, key_parsing_mask_dict_align, facial_token_mask, facial_token_idx, facial_token_idx_mask

    @torch.inference_mode()
    def extract_parsed_image_parts(self, input_image_obj, key_parsing_mask_dict, image_size=512, max_num_facials=5):
        facial_masks = []
        parsed_image_parts = []
        key_masked_raw_images_dict = {}
        transform_mask = transforms.Compose([transforms.CenterCrop(size=image_size), transforms.ToTensor(),])
        clip_preprocessor = CLIPImageProcessor()

        num_facial_part = len(key_parsing_mask_dict)

        for key in key_parsing_mask_dict:
            key_mask=key_parsing_mask_dict[key]
            facial_masks.append(transform_mask(key_mask))
            key_masked_raw_image = apply_mask_to_raw_image(input_image_obj, key_mask)
            key_masked_raw_images_dict[key] = key_masked_raw_image
            # clip_preprocessor normalizes key_masked_raw_image, so that (masked) zero pixels become non-zero.
            # It also resizes the image to 224x224.
            parsed_image_part = clip_preprocessor(images=key_masked_raw_image, return_tensors="pt").pixel_values
            parsed_image_parts.append(parsed_image_part)
            
        padding_ficial_clip_image = torch.zeros_like(torch.zeros([1, 3, 224, 224]))
        padding_ficial_mask = torch.zeros_like(torch.zeros([1, image_size, image_size]))

        if num_facial_part < max_num_facials:
            parsed_image_parts  += [ torch.zeros_like(padding_ficial_clip_image) for _ in range(max_num_facials - num_facial_part) ]
            facial_masks        += [ torch.zeros_like(padding_ficial_mask)       for _ in range(max_num_facials - num_facial_part) ]

        parsed_image_parts  = torch.stack(parsed_image_parts, dim=1).squeeze(0)
        facial_masks        = torch.stack(facial_masks,       dim=0).squeeze(dim=1)

        return parsed_image_parts, facial_masks, key_masked_raw_images_dict

    # Release the unet/vae/text_encoder to save memory.
    def release_components(self, released_components=["unet", "vae", "text_encoder"]):
        if "unet" in released_components:
            unet = edict()
            # Only keep the config and in_channels attributes that are used in the pipeline.
            unet.config = self.unet.config
            self.unet = unet

        if "vae" in released_components:
            self.vae = None
        if "text_encoder" in released_components:
            self.text_encoder = None

    # input_subj_image_obj: an Image object.
    def extract_double_id_prompt_embeds(self, prompt, negative_prompt, input_subj_image_obj, device, calc_uncond=True):
        face_caption = "The person has one nose, two eyes, two ears, and a mouth."
        key_parsing_mask_dict, vis_parsing_anno_color = self.extract_facemask(input_subj_image_obj)

        augmented_prompt, clean_input_id, key_parsing_mask_dict_align, \
          facial_token_mask, facial_token_idx, facial_token_idx_mask \
            = self.augment_prompt_with_trigger_word(
                prompt = prompt,
                face_caption = face_caption,
                key_parsing_mask_dict=key_parsing_mask_dict,
                device=device,
                max_num_facials = 5,
                num_id_images = 1
                )

        text_embeds, uncond_text_embeds = self.encode_prompt(
            augmented_prompt,
            device=device,
            num_images_per_prompt=1,
            do_classifier_free_guidance=calc_uncond,
            negative_prompt=negative_prompt,
        )

        # 5. Prepare the input ID images
        # global_id_embeds: [1, 4, 768]
        # extract_global_id_embeds() extrats OpenCLIP embeddings from the input image and map them to global face prompt embeddings.
        global_id_embeds, uncond_global_id_embeds = \
            self.extract_global_id_embeds(face_image_obj=input_subj_image_obj, s_scale=1.0, shortcut=False)

        # parsed_image_parts: [5, 3, 224, 224]. 5 parts, each part is a 3-channel 224x224 image (resized by CLIP Preprocessor).
        parsed_image_parts, facial_masks, key_masked_raw_images_dict = \
            self.extract_parsed_image_parts(input_subj_image_obj, key_parsing_mask_dict_align, image_size=512, max_num_facials=5)
        parsed_image_parts2 = parsed_image_parts.unsqueeze(0).to(device, dtype=self.torch_dtype)
        facial_token_mask = facial_token_mask.to(device)
        facial_token_idx_mask = facial_token_idx_mask.to(device)

        # key_masked_raw_images_dict: ['Right_Eye', 'Right_Ear', 'Nose', 'Upper_Lip']
        # for key in key_masked_raw_images_dict:
        #     key_masked_raw_images_dict[key].save(f"{key}.png")

        # 6. Get the update text embedding
        # parsed_image_parts2: the facial areas of the input image
        # extract_local_facial_embeds() maps parsed_image_parts2 to multi_facial_embeds, and then replaces the class tokens in prompt_embeds 
        # with the fused (id_embeds, prompt_embeds[class_tokens_mask]) whose indices are specified by class_tokens_mask.        
        # parsed_image_parts2: [1, 5, 3, 224, 224]
        text_local_id_embeds, uncond_text_local_id_embeds = \
            self.extract_local_facial_embeds(text_embeds, uncond_text_embeds, \
                                             parsed_image_parts2, facial_token_mask, facial_token_idx_mask,
                                             calc_uncond=calc_uncond)

        # text_global_id_embeds, text_local_global_id_embeds: [1, 81, 768]
        # text_local_id_embeds: [1, 77, 768], only differs with text_embeds on 4 ID embeddings, and is identical
        # to text_embeds on the rest 73 tokens.
        text_global_id_embeds         = torch.cat([text_embeds,          global_id_embeds], dim=1)
        text_local_global_id_embeds   = torch.cat([text_local_id_embeds, global_id_embeds], dim=1)

        if calc_uncond:
            uncond_text_global_id_embeds  = torch.cat([uncond_text_local_id_embeds, uncond_global_id_embeds], dim=1)
            coarse_prompt_embeds = torch.cat([uncond_text_global_id_embeds, text_global_id_embeds], dim=0)
            fine_prompt_embeds   = torch.cat([uncond_text_global_id_embeds, text_local_global_id_embeds], dim=0)
        else:
            coarse_prompt_embeds = text_global_id_embeds
            fine_prompt_embeds   = text_local_global_id_embeds

        # fine_prompt_embeds: the conditional part is 
        # (text_global_id_embeds + text_local_global_id_embeds) / 2.
        fine_prompt_embeds   = (coarse_prompt_embeds + fine_prompt_embeds) / 2

        return coarse_prompt_embeds, fine_prompt_embeds
    
    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        original_size: Optional[Tuple[int, int]] = None,
        target_size: Optional[Tuple[int, int]] = None,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        input_subj_image_objs: PipelineImageInput = None,
        start_merge_step: int = 0,
    ):
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width  = width  or self.unet.config.sample_size * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        do_classifier_free_guidance = guidance_scale >= 1.0
        assert do_classifier_free_guidance

        if input_subj_image_objs is not None:
            if not isinstance(input_subj_image_objs, list):
                input_subj_image_objs = [input_subj_image_objs]

            # 3. Encode input prompt
            coarse_prompt_embeds, fine_prompt_embeds = \
                self.extract_double_id_prompt_embeds(prompt, negative_prompt, input_subj_image_objs[0], device)
        else:
            # Replace the coarse_prompt_embeds and fine_prompt_embeds with the input prompt_embeds.
            # This is used when prompt_embeds are computed in advance.
            cfg_prompt_embeds    = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            coarse_prompt_embeds = cfg_prompt_embeds
            fine_prompt_embeds   = cfg_prompt_embeds

        # 7. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 8. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            self.dtype,
            device,
            generator,
            latents,
        )

        # {'eta': 0.0, 'generator': None}. eta is 0 for DDIM.
        extra_step_kwargs    = self.prepare_extra_step_kwargs(generator, eta)
        cross_attention_kwargs = {}

        # 9. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                latent_model_input = (
                    torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                )
                # DDIM doesn't scale latent_model_input.                
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                
                if i <= start_merge_step:
                    current_prompt_embeds = coarse_prompt_embeds
                else:
                    current_prompt_embeds = fine_prompt_embeds

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=current_prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                    )
                else:
                    assert 0, "Not Implemented"

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs
                ).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or \
                  ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        if output_type == "latent":
            image = latents
        elif output_type == "pil":
            # 9.1 Post-processing
            image = self.decode_latents(latents)
            # 9.3 Convert to PIL
            image = self.numpy_to_pil(image)
        else:
            # 9.1 Post-processing
            image = self.decode_latents(latents)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, None)

        return StableDiffusionPipelineOutput(
            images=image, nsfw_content_detected=None
        )