Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,181 Bytes
ad88a0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
import numpy as np
import math
import types
import torch
import torch.nn as nn
import numpy as np
import cv2
import re
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange
from PIL import Image
def extract_first_sentence(text):
end_index = text.find('.')
if end_index != -1:
first_sentence = text[:end_index + 1]
return first_sentence.strip()
else:
return text.strip()
import re
def remove_duplicate_keywords(text, keywords):
keyword_counts = {}
words = re.findall(r'\b\w+\b|[.,;!?]', text)
for keyword in keywords:
keyword_counts[keyword] = 0
for i, word in enumerate(words):
if word.lower() == keyword.lower():
keyword_counts[keyword] += 1
if keyword_counts[keyword] > 1:
words[i] = ""
processed_text = " ".join(words)
return processed_text
# text: 'The person has one nose , two eyes , two ears , and a mouth .'
def insert_markers_to_prompt(text, parsing_mask_dict):
keywords = ["face", "ears", "eyes", "nose", "mouth"]
text = remove_duplicate_keywords(text, keywords)
key_parsing_mask_markers = ["Nose", "Face", "Left_Ear", "Right_Ear", "Left_Eye", "Right_Eye", "Upper_Lip", "Lower_Lip"]
mapping = {
"Face": "face",
"Left_Ear": "ears",
"Right_Ear": "ears",
"Left_Eye": "eyes",
"Right_Eye": "eyes",
"Nose": "nose",
"Upper_Lip": "mouth",
"Lower_Lip": "mouth",
}
facial_features_align = []
markers_align = []
for key in key_parsing_mask_markers:
if key in parsing_mask_dict:
mapped_key = mapping.get(key, key.lower())
if mapped_key not in facial_features_align:
facial_features_align.append(mapped_key)
markers_align.append("<|" + mapped_key + "|>")
text_marked = text
align_parsing_mask_dict = parsing_mask_dict
for feature, marker in zip(facial_features_align[::-1], markers_align[::-1]):
pattern = rf'\b{feature}\b'
text_marked_new = re.sub(pattern, f'{feature} {marker}', text_marked, count=1)
if text_marked == text_marked_new:
for key, value in mapping.items():
if value == feature:
if key in align_parsing_mask_dict:
del align_parsing_mask_dict[key]
text_marked = text_marked_new
text_marked = text_marked.replace('\n', '')
ordered_text = []
text_none_makers = []
facial_marked_count = 0
skip_count = 0
for marker in markers_align:
start_idx = text_marked.find(marker)
end_idx = start_idx + len(marker)
while start_idx > 0 and text_marked[start_idx - 1] not in [",", ".", ";"]:
start_idx -= 1
while end_idx < len(text_marked) and text_marked[end_idx] not in [",", ".", ";"]:
end_idx += 1
context = text_marked[start_idx:end_idx].strip()
if context == "":
text_none_makers.append(text_marked[:end_idx])
else:
if skip_count!=0:
skip_count -= 1
continue
else:
ordered_text.append(context + ", ")
text_delete_makers = text_marked[:start_idx] + text_marked[end_idx:]
text_marked = text_delete_makers
facial_marked_count += 1
# ordered_text: ['The person has one nose <|nose|>, ', 'two ears <|ears|>, ',
# 'two eyes <|eyes|>, ', 'and a mouth <|mouth|>, ']
# align_parsing_mask_dict.keys(): ['Right_Eye', 'Right_Ear', 'Nose', 'Upper_Lip']
align_marked_text = "".join(ordered_text)
replace_list = ["<|face|>", "<|ears|>", "<|nose|>", "<|eyes|>", "<|mouth|>"]
for item in replace_list:
align_marked_text = align_marked_text.replace(item, "<|facial|>")
# align_marked_text: 'The person has one nose <|facial|>, two ears <|facial|>, two eyes <|facial|>, and a mouth <|facial|>, '
return align_marked_text, align_parsing_mask_dict
def tokenize_and_mask_noun_phrases_ends(text, image_token_id, facial_token_id, tokenizer):
input_ids = tokenizer.encode(text)
image_noun_phrase_end_mask = [False for _ in input_ids]
facial_noun_phrase_end_mask = [False for _ in input_ids]
clean_input_ids = []
clean_index = 0
image_num = 0
for i, id in enumerate(input_ids):
if id == image_token_id:
image_noun_phrase_end_mask[clean_index + image_num - 1] = True
image_num += 1
elif id == facial_token_id:
facial_noun_phrase_end_mask[clean_index - 1] = True
else:
clean_input_ids.append(id)
clean_index += 1
max_len = tokenizer.model_max_length
if len(clean_input_ids) > max_len:
clean_input_ids = clean_input_ids[:max_len]
else:
clean_input_ids = clean_input_ids + [tokenizer.pad_token_id] * (
max_len - len(clean_input_ids)
)
if len(image_noun_phrase_end_mask) > max_len:
image_noun_phrase_end_mask = image_noun_phrase_end_mask[:max_len]
else:
image_noun_phrase_end_mask = image_noun_phrase_end_mask + [False] * (
max_len - len(image_noun_phrase_end_mask)
)
if len(facial_noun_phrase_end_mask) > max_len:
facial_noun_phrase_end_mask = facial_noun_phrase_end_mask[:max_len]
else:
facial_noun_phrase_end_mask = facial_noun_phrase_end_mask + [False] * (
max_len - len(facial_noun_phrase_end_mask)
)
clean_input_ids = torch.tensor(clean_input_ids, dtype=torch.long)
image_noun_phrase_end_mask = torch.tensor(image_noun_phrase_end_mask, dtype=torch.bool)
facial_noun_phrase_end_mask = torch.tensor(facial_noun_phrase_end_mask, dtype=torch.bool)
return clean_input_ids.unsqueeze(0), image_noun_phrase_end_mask.unsqueeze(0), facial_noun_phrase_end_mask.unsqueeze(0)
def prepare_image_token_idx(image_token_mask, facial_token_mask, max_num_objects=2, max_num_facials=5):
image_token_idx = torch.nonzero(image_token_mask, as_tuple=True)[1]
image_token_idx_mask = torch.ones_like(image_token_idx, dtype=torch.bool)
if len(image_token_idx) < max_num_objects:
image_token_idx = torch.cat(
[
image_token_idx,
torch.zeros(max_num_objects - len(image_token_idx), dtype=torch.long),
]
)
image_token_idx_mask = torch.cat(
[
image_token_idx_mask,
torch.zeros(
max_num_objects - len(image_token_idx_mask),
dtype=torch.bool,
),
]
)
facial_token_idx = torch.nonzero(facial_token_mask, as_tuple=True)[1]
facial_token_idx_mask = torch.ones_like(facial_token_idx, dtype=torch.bool)
if len(facial_token_idx) < max_num_facials:
facial_token_idx = torch.cat(
[
facial_token_idx,
torch.zeros(max_num_facials - len(facial_token_idx), dtype=torch.long),
]
)
facial_token_idx_mask = torch.cat(
[
facial_token_idx_mask,
torch.zeros(
max_num_facials - len(facial_token_idx_mask),
dtype=torch.bool,
),
]
)
image_token_idx = image_token_idx.unsqueeze(0)
image_token_idx_mask = image_token_idx_mask.unsqueeze(0)
facial_token_idx = facial_token_idx.unsqueeze(0)
facial_token_idx_mask = facial_token_idx_mask.unsqueeze(0)
return image_token_idx, image_token_idx_mask, facial_token_idx, facial_token_idx_mask
def get_object_localization_loss_for_one_layer(
cross_attention_scores,
object_segmaps,
object_token_idx,
object_token_idx_mask,
loss_fn,
):
bxh, num_noise_latents, num_text_tokens = cross_attention_scores.shape
b, max_num_objects, _, _ = object_segmaps.shape
size = int(num_noise_latents**0.5)
object_segmaps = F.interpolate(object_segmaps, size=(size, size), mode="bilinear", antialias=True)
object_segmaps = object_segmaps.view(
b, max_num_objects, -1
)
num_heads = bxh // b
cross_attention_scores = cross_attention_scores.view(b, num_heads, num_noise_latents, num_text_tokens)
object_token_attn_prob = torch.gather(
cross_attention_scores,
dim=3,
index=object_token_idx.view(b, 1, 1, max_num_objects).expand(
b, num_heads, num_noise_latents, max_num_objects
),
)
object_segmaps = (
object_segmaps.permute(0, 2, 1)
.unsqueeze(1)
.expand(b, num_heads, num_noise_latents, max_num_objects)
)
loss = loss_fn(object_token_attn_prob, object_segmaps)
loss = loss * object_token_idx_mask.view(b, 1, max_num_objects)
object_token_cnt = object_token_idx_mask.sum(dim=1).view(b, 1) + 1e-5
loss = (loss.sum(dim=2) / object_token_cnt).mean()
return loss
def get_object_localization_loss(
cross_attention_scores,
object_segmaps,
image_token_idx,
image_token_idx_mask,
loss_fn,
):
num_layers = len(cross_attention_scores)
loss = 0
for k, v in cross_attention_scores.items():
layer_loss = get_object_localization_loss_for_one_layer(
v, object_segmaps, image_token_idx, image_token_idx_mask, loss_fn
)
loss += layer_loss
return loss / num_layers
def unet_store_cross_attention_scores(unet, attention_scores, layers=5):
from diffusers.models.attention_processor import Attention
UNET_LAYER_NAMES = [
"down_blocks.0",
"down_blocks.1",
"down_blocks.2",
"mid_block",
"up_blocks.1",
"up_blocks.2",
"up_blocks.3",
]
start_layer = (len(UNET_LAYER_NAMES) - layers) // 2
end_layer = start_layer + layers
applicable_layers = UNET_LAYER_NAMES[start_layer:end_layer]
def make_new_get_attention_scores_fn(name):
def new_get_attention_scores(module, query, key, attention_mask=None):
attention_probs = module.old_get_attention_scores(
query, key, attention_mask
)
attention_scores[name] = attention_probs
return attention_probs
return new_get_attention_scores
for name, module in unet.named_modules():
if isinstance(module, Attention) and "attn1" in name:
if not any(layer in name for layer in applicable_layers):
continue
module.old_get_attention_scores = module.get_attention_scores
module.get_attention_scores = types.MethodType(
make_new_get_attention_scores_fn(name), module
)
return unet
class BalancedL1Loss(nn.Module):
def __init__(self, threshold=1.0, normalize=False):
super().__init__()
self.threshold = threshold
self.normalize = normalize
def forward(self, object_token_attn_prob, object_segmaps):
if self.normalize:
object_token_attn_prob = object_token_attn_prob / (
object_token_attn_prob.max(dim=2, keepdim=True)[0] + 1e-5
)
background_segmaps = 1 - object_segmaps
background_segmaps_sum = background_segmaps.sum(dim=2) + 1e-5
object_segmaps_sum = object_segmaps.sum(dim=2) + 1e-5
background_loss = (object_token_attn_prob * background_segmaps).sum(
dim=2
) / background_segmaps_sum
object_loss = (object_token_attn_prob * object_segmaps).sum(
dim=2
) / object_segmaps_sum
return background_loss - object_loss
def apply_mask_to_raw_image(raw_image, mask_image):
mask_image = mask_image.resize(raw_image.size)
mask_raw_image = Image.composite(raw_image, Image.new('RGB', raw_image.size, (0, 0, 0)), mask_image)
return mask_raw_image
mapping_table = [
{"Mask Value": 0, "Body Part": "Background", "RGB Color": [0, 0, 0]},
{"Mask Value": 1, "Body Part": "Face", "RGB Color": [255, 0, 0]},
{"Mask Value": 2, "Body Part": "Left_Eyebrow", "RGB Color": [255, 85, 0]},
{"Mask Value": 3, "Body Part": "Right_Eyebrow", "RGB Color": [255, 170, 0]},
{"Mask Value": 4, "Body Part": "Left_Eye", "RGB Color": [255, 0, 85]},
{"Mask Value": 5, "Body Part": "Right_Eye", "RGB Color": [255, 0, 170]},
{"Mask Value": 6, "Body Part": "Hair", "RGB Color": [0, 0, 255]},
{"Mask Value": 7, "Body Part": "Left_Ear", "RGB Color": [85, 0, 255]},
{"Mask Value": 8, "Body Part": "Right_Ear", "RGB Color": [170, 0, 255]},
{"Mask Value": 9, "Body Part": "Mouth_External Contour", "RGB Color": [0, 255, 85]},
{"Mask Value": 10, "Body Part": "Nose", "RGB Color": [0, 255, 0]},
{"Mask Value": 11, "Body Part": "Mouth_Inner_Contour", "RGB Color": [0, 255, 170]},
{"Mask Value": 12, "Body Part": "Upper_Lip", "RGB Color": [85, 255, 0]},
{"Mask Value": 13, "Body Part": "Lower_Lip", "RGB Color": [170, 255, 0]},
{"Mask Value": 14, "Body Part": "Neck", "RGB Color": [0, 85, 255]},
{"Mask Value": 15, "Body Part": "Neck_Inner Contour", "RGB Color": [0, 170, 255]},
{"Mask Value": 16, "Body Part": "Cloth", "RGB Color": [255, 255, 0]},
{"Mask Value": 17, "Body Part": "Hat", "RGB Color": [255, 0, 255]},
{"Mask Value": 18, "Body Part": "Earring", "RGB Color": [255, 85, 255]},
{"Mask Value": 19, "Body Part": "Necklace", "RGB Color": [255, 255, 85]},
{"Mask Value": 20, "Body Part": "Glasses", "RGB Color": [255, 170, 255]},
{"Mask Value": 21, "Body Part": "Hand", "RGB Color": [255, 0, 255]},
{"Mask Value": 22, "Body Part": "Wristband", "RGB Color": [0, 255, 255]},
{"Mask Value": 23, "Body Part": "Clothes_Upper", "RGB Color": [85, 255, 255]},
{"Mask Value": 24, "Body Part": "Clothes_Lower", "RGB Color": [170, 255, 255]}
]
def masks_for_unique_values(image_raw_mask):
image_array = np.array(image_raw_mask)
unique_values, counts = np.unique(image_array, return_counts=True)
masks_dict = {}
for value in unique_values:
binary_image = np.uint8(image_array == value) * 255
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
mask = np.zeros_like(image_array)
for contour in contours:
cv2.drawContours(mask, [contour], -1, (255), thickness=cv2.FILLED)
if value == 0:
body_part="WithoutBackground"
mask2 = np.where(mask == 255, 0, 255).astype(mask.dtype)
masks_dict[body_part] = Image.fromarray(mask2)
body_part = next((entry["Body Part"] for entry in mapping_table if entry["Mask Value"] == value), f"Unknown_{value}")
if body_part.startswith("Unknown_"):
continue
masks_dict[body_part] = Image.fromarray(mask)
return masks_dict
# FFN
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
x = x.view(bs, length, heads, -1)
x = x.transpose(1, 2)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
# x -> kv, latents -> q
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1)
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
class FacePerceiverResampler(torch.nn.Module):
def __init__(
self,
*,
dim=768,
depth=4,
dim_head=64,
heads=16,
embedding_dim=1280,
output_dim=768,
ff_mult=4,
):
super().__init__()
self.proj_in = torch.nn.Linear(embedding_dim, dim)
self.proj_out = torch.nn.Linear(dim, output_dim)
self.norm_out = torch.nn.LayerNorm(output_dim)
self.layers = torch.nn.ModuleList([])
for _ in range(depth):
self.layers.append(
torch.nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
# x -> kv, latents -> q
def forward(self, latents, x): # latents.torch.Size([2, 4, 768]) x.torch.Size([2, 257, 1280])
x = self.proj_in(x) # x.torch.Size([2, 257, 768])
for attn, ff in self.layers:
# x -> kv, latents -> q
latents = attn(x, latents) + latents # latents.torch.Size([2, 4, 768])
latents = ff(latents) + latents # latents.torch.Size([2, 4, 768])
latents = self.proj_out(latents)
return self.norm_out(latents)
class ProjPlusModel(torch.nn.Module):
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.num_tokens = num_tokens
self.proj = torch.nn.Sequential(
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
torch.nn.GELU(),
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
self.perceiver_resampler = FacePerceiverResampler(
dim=cross_attention_dim,
depth=4,
dim_head=64,
heads=cross_attention_dim // 64,
embedding_dim=clip_embeddings_dim,
output_dim=cross_attention_dim,
ff_mult=4,
)
def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0):
x = self.proj(id_embeds)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
x = self.norm(x)
# id_embeds -> x -> kv, clip_embeds -> q
out = self.perceiver_resampler(x, clip_embeds)
if shortcut:
out = scale * x + out
return out
class AttentionMLP(nn.Module):
def __init__(
self,
dtype=torch.float16,
dim=1024,
depth=8,
dim_head=64,
heads=16,
single_num_tokens=1,
embedding_dim=1280,
output_dim=768,
ff_mult=4,
max_seq_len: int = 257*2,
apply_pos_emb: bool = False,
num_latents_mean_pooled: int = 0,
):
super().__init__()
self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
self.single_num_tokens = single_num_tokens
self.latents = nn.Parameter(torch.randn(1, self.single_num_tokens, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.to_latents_from_mean_pooled_seq = (
nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim * num_latents_mean_pooled),
Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
)
if num_latents_mean_pooled > 0
else None
)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
def forward(self, x):
if self.pos_emb is not None:
n, device = x.shape[1], x.device
pos_emb = self.pos_emb(torch.arange(n, device=device))
x = x + pos_emb
# x torch.Size([5, 257, 1280])
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x) # torch.Size([5, 257, 1024])
if self.to_latents_from_mean_pooled_seq:
meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
latents = torch.cat((meanpooled_latents, latents), dim=-2)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
def masked_mean(t, *, dim, mask=None):
if mask is None:
return t.mean(dim=dim)
denom = mask.sum(dim=dim, keepdim=True)
mask = rearrange(mask, "b n -> b n 1")
masked_t = t.masked_fill(~mask, 0.0)
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
|