File size: 3,329 Bytes
ad88a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import cv2
import numpy as np
from skimage.filters import gaussian


def sharpen(img):
    img = img * 1.0
    gauss_out = gaussian(img, sigma=5, multichannel=True)

    alpha = 1.5
    img_out = (img - gauss_out) * alpha + img

    img_out = img_out / 255.0

    mask_1 = img_out < 0
    mask_2 = img_out > 1

    img_out = img_out * (1 - mask_1)
    img_out = img_out * (1 - mask_2) + mask_2
    img_out = np.clip(img_out, 0, 1)
    img_out = img_out * 255
    return np.array(img_out, dtype=np.uint8)


def hair(image, parsing, part=17, color=[230, 50, 20]):
    b, g, r = color      #[10, 50, 250]       # [10, 250, 10]
    tar_color = np.zeros_like(image)
    tar_color[:, :, 0] = b
    tar_color[:, :, 1] = g
    tar_color[:, :, 2] = r

    image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    tar_hsv = cv2.cvtColor(tar_color, cv2.COLOR_BGR2HSV)

    if part == 12 or part == 13:
        image_hsv[:, :, 0:2] = tar_hsv[:, :, 0:2]
    else:
        image_hsv[:, :, 0:1] = tar_hsv[:, :, 0:1]

    changed = cv2.cvtColor(image_hsv, cv2.COLOR_HSV2BGR)

    if part == 17:
        changed = sharpen(changed)

    changed[parsing != part] = image[parsing != part]
    # changed = cv2.resize(changed, (512, 512))
    return changed

#
# def lip(image, parsing, part=17, color=[230, 50, 20]):
#     b, g, r = color      #[10, 50, 250]       # [10, 250, 10]
#     tar_color = np.zeros_like(image)
#     tar_color[:, :, 0] = b
#     tar_color[:, :, 1] = g
#     tar_color[:, :, 2] = r
#
#     image_lab = cv2.cvtColor(image, cv2.COLOR_BGR2Lab)
#     il, ia, ib = cv2.split(image_lab)
#
#     tar_lab = cv2.cvtColor(tar_color, cv2.COLOR_BGR2Lab)
#     tl, ta, tb = cv2.split(tar_lab)
#
#     image_lab[:, :, 0] = np.clip(il - np.mean(il) + tl, 0, 100)
#     image_lab[:, :, 1] = np.clip(ia - np.mean(ia) + ta, -127, 128)
#     image_lab[:, :, 2] = np.clip(ib - np.mean(ib) + tb, -127, 128)
#
#
#     changed = cv2.cvtColor(image_lab, cv2.COLOR_Lab2BGR)
#
#     if part == 17:
#         changed = sharpen(changed)
#
#     changed[parsing != part] = image[parsing != part]
#     # changed = cv2.resize(changed, (512, 512))
#     return changed


if __name__ == '__main__':
    # 1  face
    # 10 nose
    # 11 teeth
    # 12 upper lip
    # 13 lower lip
    # 17 hair
    num = 116
    table = {
        'hair': 17,
        'upper_lip': 12,
        'lower_lip': 13
    }
    image_path = '/home/zll/data/CelebAMask-HQ/test-img/{}.jpg'.format(num)
    parsing_path = 'res/test_res/{}.png'.format(num)

    image = cv2.imread(image_path)
    ori = image.copy()
    parsing = np.array(cv2.imread(parsing_path, 0))
    parsing = cv2.resize(parsing, image.shape[0:2], interpolation=cv2.INTER_NEAREST)

    parts = [table['hair'], table['upper_lip'], table['lower_lip']]
    # colors = [[20, 20, 200], [100, 100, 230], [100, 100, 230]]
    colors = [[100, 200, 100]]
    for part, color in zip(parts, colors):
        image = hair(image, parsing, part, color)
    cv2.imwrite('res/makeup/116_ori.png', cv2.resize(ori, (512, 512)))
    cv2.imwrite('res/makeup/116_2.png', cv2.resize(image, (512, 512)))

    cv2.imshow('image', cv2.resize(ori, (512, 512)))
    cv2.imshow('color', cv2.resize(image, (512, 512)))

    # cv2.imshow('image', ori)
    # cv2.imshow('color', image)

    cv2.waitKey(0)
    cv2.destroyAllWindows()