Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""DocAI_DeploymentGradio.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1USSEj7nHh2n2hUhTJTC0Iwhj6mSR7-mD | |
""" | |
import os | |
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu') | |
os.system('pip install pyyaml==5.1') | |
os.system('pip install -q git+https://github.com/huggingface/transformers.git') | |
os.system('pip install -q datasets seqeval') | |
os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html') | |
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html') | |
os.system('pip install -q pytesseract') | |
!pip install gradio | |
!pip install -q git+https://github.com/huggingface/transformers.git | |
!pip install h5py | |
!pip install -q datasets seqeval | |
import gradio as gr | |
import numpy as np | |
import tensorflow as tf | |
import torch | |
import json | |
from datasets.features import ClassLabel | |
from transformers import AutoProcessor | |
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D | |
from datasets import load_dataset # this dataset uses the new Image feature :) | |
from transformers import LayoutLMv3ForTokenClassification | |
from transformers import AutoModelForTokenClassification | |
#import cv2 | |
from PIL import Image, ImageDraw, ImageFont | |
dataset = load_dataset("nielsr/funsd-layoutlmv3") | |
example = dataset["test"][0] | |
#image_path = "/root/.cache/huggingface/datasets/nielsr___funsd-layoutlmv3/funsd/1.0.0/0e3f4efdfd59aa1c3b4952c517894f7b1fc4d75c12ef01bcc8626a69e41c1bb9/funsd-layoutlmv3-test.arrow" | |
image_path = '/root/.cache/huggingface/datasets/nielsr___funsd-layoutlmv3/funsd/1.0.0/0e3f4efdfd59aa1c3b4952c517894f7b1fc4d75c12ef01bcc8626a69e41c1bb9' | |
example = dataset["test"][0] | |
example["image"].save("example1.png") | |
example1 = dataset["test"][1] | |
example1["image"].save("example2.png") | |
example2 = dataset["test"][2] | |
example2["image"].save("example3.png") | |
example2["image"] | |
#Image.open(dataset[2][image_path]).convert("RGB").save("example1.png") | |
#Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png") | |
#Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png") | |
words, boxes, ner_tags = example["tokens"], example["bboxes"], example["ner_tags"] | |
features = dataset["test"].features | |
column_names = dataset["test"].column_names | |
image_column_name = "image" | |
text_column_name = "tokens" | |
boxes_column_name = "bboxes" | |
label_column_name = "ner_tags" | |
def get_label_list(labels): | |
unique_labels = set() | |
for label in labels: | |
unique_labels = unique_labels | set(label) | |
label_list = list(unique_labels) | |
label_list.sort() | |
return label_list | |
if isinstance(features[label_column_name].feature, ClassLabel): | |
label_list = features[label_column_name].feature.names | |
# No need to convert the labels since they are already ints. | |
id2label = {k: v for k,v in enumerate(label_list)} | |
label2id = {v: k for k,v in enumerate(label_list)} | |
else: | |
label_list = get_label_list(dataset["train"][label_column_name]) | |
id2label = {k: v for k,v in enumerate(label_list)} | |
label2id = {v: k for k,v in enumerate(label_list)} | |
num_labels = len(label_list) | |
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'} | |
def prepare_examples(examples): | |
images = examples[image_column_name] | |
words = examples[text_column_name] | |
boxes = examples[boxes_column_name] | |
word_labels = examples[label_column_name] | |
encoding = processor(images, words, boxes=boxes, word_labels=word_labels, | |
truncation=True, padding="max_length") | |
return encoding | |
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) | |
model = LayoutLMv3ForTokenClassification.from_pretrained("microsoft/layoutlmv3-base", | |
id2label=id2label, | |
label2id=label2id) | |
# we need to define custom features for `set_format` (used later on) to work properly | |
features = Features({ | |
'pixel_values': Array3D(dtype="float32", shape=(3, 224, 224)), | |
'input_ids': Sequence(feature=Value(dtype='int64')), | |
'attention_mask': Sequence(Value(dtype='int64')), | |
'bbox': Array2D(dtype="int64", shape=(512, 4)), | |
'labels': Sequence(feature=Value(dtype='int64')), | |
}) | |
eval_dataset = dataset["test"].map( | |
prepare_examples, | |
batched=True, | |
remove_columns=column_names, | |
features=features, | |
) | |
def unnormalize_box(bbox, width, height): | |
return [ | |
width * (bbox[0] / 1000), | |
height * (bbox[1] / 1000), | |
width * (bbox[2] / 1000), | |
height * (bbox[3] / 1000), | |
] | |
def process_image(image): | |
print(type(image)) | |
width, height = image.size | |
image = example["image"] | |
words = example["tokens"] | |
boxes = example["bboxes"] | |
word_labels = example["ner_tags"] | |
for k,v in encoding.items(): | |
print(k,v.shape) | |
# encode | |
#encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") | |
#offset_mapping = encoding.pop('offset_mapping') | |
#encoding = processor(image, words, truncation=True,boxes=boxes, word_labels=word_labels,return_offsets_mapping=True, return_tensors="pt") | |
#offset_mapping = encoding.pop('offset_mapping') | |
encoding = processor(image, truncation=True,boxes=boxes, word_labels=word_labels,return_offsets_mapping=True, return_tensors="pt") | |
offset_mapping = encoding.pop('offset_mapping') | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
# get predictions | |
# We take the highest score for each token, using argmax. | |
# This serves as the predicted label for each token. | |
logits = outputs.logits | |
#logits.shape | |
predictions = logits.argmax(-1).squeeze().tolist() | |
labels = encoding.labels.squeeze().tolist() | |
token_boxes = encoding.bbox.squeeze().tolist() | |
width, height = image.size | |
#true_predictions = [model.config.id2label[pred] for pred, label in zip(predictions, labels) if label != - 100] | |
#true_labels = [model.config.id2label[label] for prediction, label in zip(predictions, labels) if label != -100] | |
#true_boxes = [unnormalize_box(box, width, height) for box, label in zip(token_boxes, labels) if label != -100] | |
# only keep non-subword predictions | |
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 | |
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] | |
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] | |
# draw predictions over the image | |
draw = ImageDraw.Draw(image) | |
font = ImageFont.load_default() | |
for prediction, box in zip(true_predictions, true_boxes): | |
predicted_label = id2label(prediction) | |
draw.rectangle(box, outline=label2color[predicted_label]) | |
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) | |
return image | |
title = "DocumentAI - Extraction of Key Information using LayoutLMv3 model" | |
description = "Extraction of Form or Invoice Extraction - We use Microsoft's LayoutLMv3 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds." | |
article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>" | |
examples =[['example1.png'],['example2.png'],['example3.png']] | |
css = """.output_image, .input_image {height: 600px !important}""" | |
iface = gr.Interface(fn=process_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Image(type="pil", label="annotated predict image"), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
css=css, | |
analytics_enabled = True, enable_queue=True | |
) | |
iface.launch(inline=False, share=False, debug=False) |