CodeMixt / templates.py
acecalisto3's picture
Create templates.py
bc76353 verified
raw
history blame
50.7 kB
from dataclasses import dataclass
from typing import Dict, List, Optional
import difflib
import json
import logging
from pathlib import Path
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class Template:
"""Template data structure"""
code: str
description: str
components: List[str]
metadata: Dict[str, str]
example: Optional[str] = None
class TemplateManager:
"""Manages and searches through templates"""
def __init__(self):
self.templates = {
"image_classifier": Template(
code="""
import gradio as gr
import numpy as np
from PIL import Image
def classify_image(image):
if image is None:
return {"error": 1.0}
return {"class1": 0.8, "class2": 0.2}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Image Classifier")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
classify_btn = gr.Button("Classify")
with gr.Column():
output_labels = gr.Label()
classify_btn.click(
fn=classify_image,
inputs=input_image,
outputs=output_labels
)
if __name__ == "__main__":
demo.launch()
""",
description="Basic image classification interface",
components=["Image", "Button", "Label"],
metadata={"category": "computer_vision"}
),
"chatbot": Template(
code="""
import gradio as gr
def respond(message, history):
return f"You said: {message}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# AI Chatbot")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Message")
clear = gr.Button("Clear")
msg.submit(respond, [msg, chatbot], [chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch()
""",
description="Interactive chatbot interface",
components=["Chatbot", "Textbox", "Button"],
metadata={"category": "nlp"}
),
"audio_processor": Template(
code="""
import gradio as gr
import numpy as np
def process_audio(audio, volume_factor=1.0):
if audio is None:
return None
sr, data = audio
return (sr, data * volume_factor)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Audio Processor")
with gr.Row():
with gr.Column():
input_audio = gr.Audio(source="microphone", type="numpy")
volume = gr.Slider(minimum=0, maximum=2, value=1, label="Volume")
process_btn = gr.Button("Process")
with gr.Column():
output_audio = gr.Audio(type="numpy")
process_btn.click(
fn=process_audio,
inputs=[input_audio, volume],
outputs=output_audio
)
if __name__ == "__main__":
demo.launch()
""",
description="Audio processing interface",
components=["Audio", "Slider", "Button"],
metadata={"category": "audio"}
),
"file_processor": Template(
code="""
import gradio as gr
def process_file(file):
if file is None:
return "No file uploaded"
return f"Processed file: {file.name}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# File Processor")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload File")
process_btn = gr.Button("Process")
with gr.Column():
output = gr.Textbox(label="Results")
json_output = gr.JSON(label="Detailed Results")
process_btn.click(
fn=process_file,
inputs=file_input,
outputs=[output, json_output]
)
if __name__ == "__main__":
demo.launch()
""",
description="File processing interface",
components=["File", "Button", "Textbox", "JSON"],
metadata={"category": "utility"}
),
"data_visualization": Template(
code="" """
import gradio as gr
import pandas as pd
import plotly.express as px
def visualize_data(data, plot_type):
if data is None:
return None
df = pd.read_csv(data.name)
if plot_type == "scatter":
fig = px.scatter(df, x=df.columns[0], y=df.columns[1])
elif plot_type == "line":
fig = px.line(df, x=df.columns[0], y=df.columns[1])
else:
fig = px.bar(df, x=df.columns[0], y=df.columns[1])
return fig
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Data Visualizer")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload CSV")
plot_type = gr.Radio(
choices=["scatter", "line", "bar"],
label="Plot Type",
value="scatter"
)
visualize_btn = gr.Button("Visualize")
with gr.Column():
plot_output = gr.Plot(label="Visualization")
visualize_btn.click(
fn=visualize_data,
inputs=[file_input, plot_type],
outputs=plot_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Data visualization interface",
components=["File", "Radio", "Button", "Plot"],
metadata={"category": "data_science"}
),
"form_builder": Template(
code="""
import gradio as gr
import json
def submit_form(name, email, age, interests, subscribe):
return json.dumps({
"name": name,
"email": email,
"age": age,
"interests": interests,
"subscribe": subscribe
}, indent=2)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Form Builder")
with gr.Row():
with gr.Column():
name = gr.Textbox(label="Name")
email = gr.Textbox(label="Email")
age = gr.Number(label="Age")
interests = gr.CheckboxGroup(
choices=["Sports", "Music", "Art", "Technology"],
label="Interests"
)
subscribe = gr.Checkbox(label="Subscribe to newsletter")
submit_btn = gr.Button("Submit")
with gr.Column():
output = gr.JSON(label="Form Data")
submit_btn.click(
fn=submit_form,
inputs=[name, email, age, interests, subscribe],
outputs=output
)
if __name__ == "__main__":
demo.launch()
""",
description="Form builder interface",
components=["Textbox", "Number", "CheckboxGroup", "Checkbox", "Button", "JSON"],
metadata={"category": "utility"}
),
"text_summarizer": Template(
code="""
import gradio as gr
from transformers import pipeline
summarizer = pipeline("summarization")
def summarize_text(text):
summary = summarizer(text, max_length=150, min_length=40, do_sample=False)
return summary[0]['summary_text']
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Text Summarizer")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter text to summarize...")
summarize_btn = gr.Button("Summarize")
with gr.Column():
summary_output = gr.Textbox(label="Summary", lines=5)
summarize_btn.click(
fn=summarize_text,
inputs=input_text,
outputs=summary_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Text summarization interface using a transformer model",
components=["Textbox", "Button"],
metadata={"category": "nlp"}
),
"image_captioner": Template(
code="""
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
def generate_caption(image):
inputs = processor(image, return_tensors="pt")
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Image Caption Generator")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload Image")
caption_btn = gr.Button("Generate Caption")
with gr.Column():
caption_output = gr.Textbox(label="Generated Caption")
caption_btn.click(
fn=generate_caption,
inputs=input_image,
outputs=caption_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Image captioning interface using a transformer model",
components=["Image", "Button", "Textbox"],
metadata={"category": "computer_vision"}
),
"style_transfer": Template(
code="""
import gradio as gr
import tensorflow as tf
import tensorflow_hub as hub
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
def apply_style(content_image, style_image):
content_image = tf.image.convert_image_dtype(content_image, tf.float32)[tf.newaxis, ...]
style_image = tf.image.convert_image_dtype(style_image, tf.float32)[tf.newaxis, ...]
stylized_image = hub_model(content_image, style_image)[0]
return tf.squeeze(stylized_image).numpy()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Neural Style Transfer")
with gr.Row():
with gr.Column():
content_image = gr.Image(label="Content Image")
style_image = gr.Image(label="Style Image")
transfer_btn = gr.Button("Transfer Style")
with gr.Column():
output_image = gr.Image(label="Stylized Image")
transfer_btn.click(
fn=apply_style,
inputs=[content_image, style_image],
outputs=output_image
)
if __name__ == "__main__":
demo.launch()
""",
description="Neural style transfer between two images",
components=["Image", "Button"],
metadata={"category": "computer_vision"}
),
"sentiment_analysis": Template(
code="""
import gradio as gr
from transformers import pipeline
sentiment_pipeline = pipeline("sentiment-analysis")
def analyze_sentiment(text):
result = sentiment_pipeline(text)[0]
return f"{result['label']} ({result['score']:.2f})"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Sentiment Analysis")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=5, placeholder="Enter text to analyze sentiment...")
analyze_btn = gr.Button("Analyze Sentiment")
with gr.Column():
sentiment_output = gr.Textbox(label="Sentiment Result")
analyze_btn.click(
fn=analyze_sentiment,
inputs=input_text,
outputs=sentiment_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Sentiment analysis using transformer model",
components=["Textbox", "Button"],
metadata={"category": "nlp"}
),
"pdf_to_text": Template(
code="""
import gradio as gr
import PyPDF2
def extract_text_from_pdf(pdf):
reader = PyPDF2.PdfFileReader(pdf)
text = ''
for page_num in range(reader.numPages):
page = reader.getPage(page_num)
text += page.extract_text()
return text
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# PDF to Text Extractor")
with gr.Row():
with gr.Column():
pdf_file = gr.File(label="Upload PDF")
extract_btn = gr.Button("Extract Text")
with gr.Column():
output_text = gr.Textbox(label="Extracted Text", lines=10)
extract_btn.click(
fn=extract_text_from_pdf,
inputs=pdf_file,
outputs=output_text
)
if __name__ == "__main__":
demo.launch()
""",
description="Extract text from PDF files",
components=["File", "Button", "Textbox"],
metadata={"category": "utility"}
),
"website_monitor": Template(
code="""
import gradio as gr
import requests
from datetime import datetime
def monitor_website(url):
try:
response = requests.get(url)
status_code = response.status_code
status = "Up" if status_code == 200 else "Down"
return {
"url": url,
"status": status,
"response_time": response.elapsed.total_seconds(),
"last_checked": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
except Exception as e:
return {"error": str(e)}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Website Uptime Monitor")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(label="Website URL", placeholder="https://example.com")
check_btn = gr.Button("Check Website")
with gr.Column():
result_output = gr.JSON(label="Monitoring Result")
check_btn.click(
fn=monitor_website,
inputs=url_input,
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Monitor the uptime and response time of a website",
components=["Textbox", "Button", "JSON"],
metadata={"category": "web_monitoring"}
),
"rss_feed_fetcher": Template(
code="""
import gradio as gr
import feedparser
def fetch_rss_feed(url):
feed = feedparser.parse(url)
if feed.bozo:
return {"error": "Invalid RSS feed URL"}
return [{"title": entry.title, "link": entry.link} for entry in feed.entries[:5]]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# RSS Feed Fetcher")
with gr.Row():
with gr.Column():
feed_url = gr.Textbox(label="RSS Feed URL", placeholder="https://example.com/feed")
fetch_btn = gr.Button("Fetch Latest Posts")
with gr.Column():
feed_output = gr.JSON(label="Latest Feed Entries")
fetch_btn.click(
fn=fetch_rss_feed,
inputs=feed_url,
outputs=feed_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Fetch the latest entries from an RSS feed",
components=["Textbox", "Button", "JSON"],
metadata={"category": "web_scraping"}
),
"web_scraper": Template(
code="""
import gradio as gr
from bs4 import BeautifulSoup
import requests
def scrape_website(url, tag):
try:
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
elements = soup.find_all(tag)
return [element.get_text() for element in elements][:5] # Limit to 5 elements
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Web Scraper")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(label="Website URL", placeholder="https://example.com")
tag_input = gr.Textbox(label="HTML Tag to Scrape", placeholder="h1, p, div, etc.")
scrape_btn = gr.Button("Scrape Website")
with gr.Column():
result_output = gr.JSON(label="Scraped Results")
scrape_btn.click(
fn=scrape_website,
inputs=[url_input, tag_input],
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Scrape text from a website based on the specified HTML tag",
components=["Textbox", "Button", "JSON"],
metadata={"category": "web_scraping"}
),
"api_tester": Template(
code="""
import gradio as gr
import requests
def test_api(endpoint, method, payload):
try:
if method == "GET":
response = requests.get(endpoint)
elif method == "POST":
response = requests.post(endpoint, json=payload)
else:
return "Unsupported method"
return {
"status_code": response.status_code,
"response_body": response.json() if response.headers.get("Content-Type") == "application/json" else response.text
}
except Exception as e:
return {"error": str(e)}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# API Tester")
with gr.Row():
with gr.Column():
endpoint = gr.Textbox(label="API Endpoint", placeholder="https://api.example.com/endpoint")
method = gr.Radio(choices=["GET", "POST"], label="HTTP Method", value="GET")
payload = gr.JSON(label="Payload (for POST)", value={})
test_btn = gr.Button("Test API")
with gr.Column():
result_output = gr.JSON(label="API Response")
test_btn.click(
fn=test_api,
inputs=[endpoint, method, payload],
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Test API endpoints with GET and POST requests",
components=["Textbox", "Radio", "JSON", "Button"],
metadata={"category": "api_testing"}
),
"email_scheduler": Template(
code="""
import gradio as gr
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from apscheduler.schedulers.background import BackgroundScheduler
scheduler = BackgroundScheduler()
scheduler.start()
def send_email(to_email, subject, body):
try:
sender_email = "[email protected]"
password = "your_password"
msg = MIMEMultipart()
msg['From'] = sender_email
msg['To'] = to_email
msg['Subject'] = subject
msg.attach(MIMEText(body, 'plain'))
server = smtplib.SMTP('smtp.example.com', 587)
server.starttls()
server.login(sender_email, password)
text = msg.as_string()
server.sendmail(sender_email, to_email, text)
server.quit()
return "Email sent successfully"
except Exception as e:
return f"Error: {str(e)}"
def schedule_email(to_email, subject, body, delay):
scheduler.add_job(send_email, 'interval', seconds=delay, args=[to_email, subject, body])
return f"Email scheduled to be sent in {delay} seconds"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Email Scheduler")
with gr.Row():
with gr.Column():
to_email = gr.Textbox(label="Recipient Email")
subject = gr.Textbox(label="Subject")
body = gr.Textbox(label="Email Body", lines=5)
delay = gr.Slider(label="Delay (seconds)", minimum=10, maximum=300, step=10, value=60)
schedule_btn = gr.Button("Schedule Email")
with gr.Column():
result_output = gr.Textbox(label="Result")
schedule_btn.click(
fn=schedule_email,
inputs=[to_email, subject, body, delay],
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Schedule emails to be sent after a delay",
components=["Textbox", "Slider", "Button"],
metadata={"category": "task_automation"}
),
"log_file_analyzer": Template(
code="""
import gradio as gr
import re
def analyze_logs(log_file, filter_text):
try:
logs = log_file.read().decode("utf-8")
if filter_text:
filtered_logs = "\n".join([line for line in logs.splitlines() if re.search(filter_text, line)])
else:
filtered_logs = logs
return filtered_logs
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Log File Analyzer")
with gr.Row():
with gr.Column():
log_input = gr.File(label="Upload Log File")
filter_input = gr.Textbox(label="Filter (Regex)", placeholder="Error|Warning")
analyze_btn = gr.Button("Analyze Logs")
with gr.Column():
output_logs = gr.Textbox(label="Filtered Logs", lines=20)
analyze_btn.click(
fn=analyze_logs,
inputs=[log_input, filter_input],
outputs=output_logs
)
if __name__ == "__main__":
demo.launch()
""",
description="Analyze and filter log files using regex",
components=["File", "Textbox", "Button"],
metadata={"category": "log_analysis"}
),
"file_encryption_tool": Template(
code="""
import gradio as gr
from cryptography.fernet import Fernet
def encrypt_file(file, password):
try:
key = password.ljust(32, '0').encode()[:32] # Basic password -> key mapping
cipher = Fernet(Fernet.generate_key())
file_data = file.read()
encrypted_data = cipher.encrypt(file_data)
return encrypted_data.decode("utf-8")
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# File Encryption Tool")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload File")
password_input = gr.Textbox(label="Password", type="password")
encrypt_btn = gr.Button("Encrypt File")
with gr.Column():
encrypted_output = gr.Textbox(label = "Encrypted Data", lines=20)
encrypt_btn.click(
fn=encrypt_file,
inputs=[file_input, password_input],
outputs=encrypted_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Encrypt a file using a password-based key",
components=["File", "Textbox", "Button"],
metadata={"category": "security"}
),
"task_scheduler": Template(
code="""
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
scheduler = BackgroundScheduler()
scheduler.start()
def schedule_task(task_name, interval):
scheduler.add_job(lambda: print(f"Running task: {task_name} at {datetime.now()}"), 'interval', seconds=interval)
return f"Task '{task_name}' scheduled to run every {interval} seconds."
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Task Scheduler")
with gr.Row():
with gr.Column():
task_input = gr.Textbox(label="Task Name", placeholder="Example Task")
interval_input = gr.Slider(minimum=1, maximum=60, label="Interval (Seconds)", value=10)
schedule_btn = gr.Button("Schedule Task")
with gr.Column():
result_output = gr.Textbox(label="Result")
schedule_btn.click(
fn=schedule_task,
inputs=[task_input, interval_input],
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Schedule tasks to run at regular intervals",
components=["Textbox", "Slider", "Button"],
metadata={"category": "task_automation"}
),
"code_comparator": Template(
code="""
import gradio as gr
import difflib
def compare_code(code1, code2):
diff = difflib.unified_diff(code1.splitlines(), code2.splitlines(), lineterm='', fromfile='code1', tofile='code2')
return '\n'.join(diff)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Code Comparator")
with gr.Row():
with gr.Column():
code1_input = gr.Textbox(label="Code 1", lines=15, placeholder="Paste the first code snippet here...")
code2_input = gr.Textbox(label="Code 2", lines=15, placeholder="Paste the second code snippet here...")
compare_btn = gr.Button("Compare Codes")
with gr.Column():
diff_output = gr.Textbox(label="Difference", lines=20)
compare_btn.click(
fn=compare_code,
inputs=[code1_input, code2_input],
outputs=diff_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Compare two code snippets and show the differences",
components=["Textbox", "Button"],
metadata={"category": "development"}
),
"database_query_tool": Template(
code="""
import gradio as gr
import sqlite3
def query_database(db_file, query):
try:
conn = sqlite3.connect(db_file.name)
cursor = conn.cursor()
cursor.execute(query)
results = cursor.fetchall()
conn.close()
return results
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Database Query Tool")
with gr.Row():
with gr.Column():
db_input = gr.File(label="Upload SQLite DB File")
query_input = gr.Textbox(label="SQL Query", placeholder="SELECT * FROM table_name;")
query_btn = gr.Button("Run Query")
with gr.Column():
query_output = gr.JSON(label="Query Results")
query_btn.click(
fn=query_database,
inputs=[db_input, query_input],
outputs=query_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Run SQL queries on a SQLite database",
components=["File", "Textbox", "Button", "JSON"],
metadata={"category": "database"}
),
"code_generator": Template(
code="""
import gradio as gr
from transformers import pipeline
code_generator = pipeline("text-generation", model="Salesforce/codegen-2B-multi")
def generate_code(prompt):
response = code_generator(prompt, max_length=150, num_return_sequences=1)
return response[0]['generated_text']
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Code Generator ")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Enter Code Prompt", placeholder="Write a Python function to reverse a string")
generate_btn = gr.Button("Generate Code")
with gr.Column():
generated_code = gr.Textbox(label="Generated Code", lines=10)
generate_btn.click(
fn=generate_code,
inputs=prompt_input,
outputs=generated_code
)
if __name__ == "__main__":
demo.launch()
""",
description="Generate code snippets based on natural language prompts",
components=["Textbox", "Button"],
metadata={"category": "development"}
),
"code_debugger": Template(
code="""
import gradio as gr
import subprocess
def debug_code(code):
try:
with open("temp_code.py", "w") as f:
f.write(code)
result = subprocess.run(["python3", "temp_code.py"], capture_output=True, text=True)
return {"stdout": result.stdout, "stderr": result.stderr}
except Exception as e:
return {"error": str(e)}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Code Debugger")
with gr.Row():
with gr.Column():
code_input = gr.Textbox(label="Code to Debug", lines=10, placeholder="Paste your Python code here...")
debug_btn = gr.Button("Run Debug")
with gr.Column():
debug_output = gr.JSON(label="Debug Output")
debug_btn.click(
fn=debug_code,
inputs=code_input,
outputs=debug_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Run and debug Python code by capturing stdout and stderr",
components=["Textbox", "Button", "JSON"],
metadata={"category": "development"}
),
"multi_agent_task_manager": Template(
code="""
import gradio as gr
from concurrent.futures import ThreadPoolExecutor
import time
agent_pool = ThreadPoolExecutor(max_workers=5)
agent_status = {}
def agent_task(agent_name, task):
agent_status[agent_name] = "Running"
time.sleep(5) # Simulate task duration
agent_status[agent_name] = "Completed"
return f"Agent {agent_name} has completed the task: {task}"
def trigger_agents(agents, task):
results = []
for agent in agents:
future = agent_pool.submit(agent_task, agent, task)
results.append(f"Agent {agent} triggered")
return results
def get_agent_status():
return agent_status
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Multi-Agent Task Manager")
with gr.Row():
with gr.Column():
agents = gr.CheckboxGroup(choices=["Agent1", "Agent2", "Agent3", "Agent4", "Agent5"], label="Select Agents")
task_input = gr.Textbox(label="Task to Perform", placeholder="Describe the task...")
trigger_btn = gr.Button("Trigger Agents")
with gr.Column():
task_output = gr.JSON(label="Agent Responses")
with gr.Row():
status_btn = gr.Button("Get Agent Status")
status_output = gr.JSON(label="Current Agent Status")
trigger_btn.click(
fn=trigger_agents,
inputs=[agents, task_input],
outputs=task_output
)
status_btn.click(
fn=get_agent_status,
inputs=[],
outputs=status_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Manage and trigger tasks for multiple autonomous agents",
components=["CheckboxGroup", "Textbox", "Button", "JSON"],
metadata={"category": "task_automation"}
),
"auto_code_refactor": Template(
code="""
import gradio as gr
from transformers import pipeline
code_refactor = pipeline("text2text-generation", model="facebook/bart-large-cnn")
def refactor_code(code):
result = code_refactor(f"Refactor the following Python code: {code}", max_length=150)
return result[0]['generated_text']
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Auto Code Refactor")
with gr.Row():
with gr.Column():
code_input = gr.Textbox(label="Code to Refactor", lines=10, placeholder="Paste your Python code here...")
refactor_btn = gr.Button("Refactor Code")
with gr.Column():
refactored_code = gr.Textbox(label="Refactored Code", lines =10)
refactor_btn.click(
fn=refactor_code,
inputs=code_input,
outputs=refactored_code
)
if __name__ == "__main__":
demo.launch()
""",
description="Automatically refactor Python code for better efficiency or readability",
components=["Textbox", "Button"],
metadata={"category": "development"}
),
"agent_cluster_deployer": Template(
code="""
import gradio as gr
import random
cluster_status = {}
def deploy_agent_cluster(agent_count, task):
cluster_id = random.randint(1000, 9999)
cluster_status[cluster_id] = {
"status": "Deploying",
"agents": agent_count,
"task": task
}
return f"Cluster {cluster_id} is deploying with {agent_count} agents for task: {task}"
def get_cluster_status():
return cluster_status
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Agent Cluster Deployer")
with gr.Row():
with gr.Column():
agent_count = gr.Slider(label="Number of Agents", minimum=1, maximum=10, step=1, value=3)
task_input = gr.Textbox(label="Cluster Task", placeholder="Describe the task for the cluster...")
deploy_btn = gr.Button("Deploy Cluster")
with gr.Column():
deploy_output = gr.Textbox(label="Cluster Deployment Status")
with gr.Row():
status_btn = gr.Button("Get Cluster Status")
status_output = gr.JSON(label="Current Cluster Status")
deploy_btn.click(
fn=deploy_agent_cluster,
inputs=[agent_count, task_input],
outputs=deploy_output
)
status_btn.click(
fn=get_cluster_status,
inputs=[],
outputs=status_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Deploy an autonomous agent cluster for task execution",
components=["Slider", "Textbox", "Button", "JSON"],
metadata={"category": "task_automation"}
)
}
self.component_index = self._build_component_index()
self.category_index = self._build_category_index()
def _build_component_index(self) -> Dict[str, List[str]]:
"""Build index of templates by component"""
index = {}
for name, template in self.templates.items():
for component in template.components:
if component not in index:
index[component] = []
index[component].append(name)
return index
def _build_category_index(self) -> Dict[str, List[str]]:
"""Build index of templates by category"""
index = {}
for name, template in self.templates.items():
category = template.metadata.get("category", "other")
if category not in index:
index[category] = []
index[category].append(name)
return index
def search(self, query: str, limit: int = 5) -> List[Dict]:
"""Search templates by description or metadata"""
try:
results = []
for name, template in self.templates.items():
desc_score = difflib.SequenceMatcher(
None,
query.lower(),
template.description.lower()
).ratio()
category_score = difflib.SequenceMatcher(
None,
query.lower(),
template.metadata.get("category", "").lower()
).ratio()
comp_score = sum(0.2 for component in template.components if component.lower() in query.lower())
final_score = max(desc_score, category_score) + comp_score
results.append({
"name": name,
"template": template,
"score": final_score
})
results.sort(key=lambda x: x["score"], reverse=True)
return results[:limit]
except Exception as e:
logger.error(f"Error searching templates: {str(e)}")
return []
def search_by_components(self, components: List[str], limit: int = 5) -> List[Dict]:
"""Search templates by required components"""
try:
results = []
for name, template in self.templates.items():
matches = sum(1 for c in components if c in template.components)
if matches > 0:
score = matches / len(components)
results.append({
"name": name,
"template": template,
"score": score
})
results.sort(key=lambda x: x["score"], reverse=True)
return results[:limit]
except Exception as e:
logger.error(f"Error searching by components: {str(e)}")
return []
def search_by_category(self, category: str) -> List[Dict]:
"""Get all templates in a category"""
try:
return [
{
"name": name,
"template": self.templates[name]
}
for name in self.category_index.get(category, [])
]
except Exception as e:
logger.error(f"Error searching by category: {str(e)}")
return []
def get_template(self, name: str) -> Optional[Template]:
"""Get specific template by name"""
return self.templates.get(name)
def get_categories(self) -> List[str]:
"""Get list of all categories"""
return list(self.category_index.keys())
def get_components(self) -> List[str]:
"""Get list of all components"""
return list(self.component_index.keys())
def export_templates(self, path: str):
"""Export templates to JSON file"""
try:
data = {
name: {
"description": template.description,
"components": template.components,
"metadata": template.metadata,
"example": template.example
}
for name, template in self.templates.items()
}
with open(path, 'w') as f:
json.dump(data, f, indent=2)
logger.info(f"Templates exported to {path}")
except Exception as e:
logger.error(f"Error exporting templates: {str(e)}")
raise
def import_templates(self, path: str):
"""Import templates from JSON file"""
try:
with open(path, 'r') as f:
data = json.load(f)
for name, template_data in data.items():
self.templates[name] = Template(
code="", # Code should be loaded separately
description=template_data["description"],
components=template_data["components"],
metadata=template_data["metadata"],
example=template_data.get("example")
)
# Rebuild indexes
self.component_index = self._build_component_index()
self.category_index = self._build_category_index()
logger.info(f"Templates imported from {path}")
except Exception as e:
logger.error(f"Error importing templates: {str(e)}")
raise
# Usage example:
if __name__ == "__main__":
# Initialize template manager
manager = TemplateManager()
# Search examples
print("\nSearching for 'machine learning':")
results = manager.search("machine learning")
for result in results:
print(f"{result['name']}: {result['score']:.2f}")
print("\nSearching for components ['Image', 'Slider']:")
results = manager.search_by_components(['Image', 'Slider'])
for result in results:
print(f"{result['name']}: {result['score']:.2f}")
print("\nCategories available:")
print(manager.get_categories())
print("\nComponents available:")
print(manager.get_components())