Spaces:
Runtime error
Runtime error
from dataclasses import dataclass | |
from typing import Dict, List, Optional | |
import difflib | |
import json | |
import logging | |
from pathlib import Path | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
logger = logging.getLogger(__name__) | |
class Template: | |
"""Template data structure""" | |
code: str | |
description: str | |
components: List[str] | |
metadata: Dict[str, str] | |
example: Optional[str] = None | |
class TemplateManager: | |
"""Manages and searches through templates""" | |
def __init__(self): | |
self.templates = { | |
"image_classifier": Template( | |
code=""" | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
def classify_image(image): | |
if image is None: | |
return {"error": 1.0} | |
return {"class1": 0.8, "class2": 0.2} | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Image Classifier") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil") | |
classify_btn = gr.Button("Classify") | |
with gr.Column(): | |
output_labels = gr.Label() | |
classify_btn.click( | |
fn=classify_image, | |
inputs=input_image, | |
outputs=output_labels | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Basic image classification interface", | |
components=["Image", "Button", "Label"], | |
metadata={"category": "computer_vision"} | |
), | |
"chatbot": Template( | |
code=""" | |
import gradio as gr | |
def respond(message, history): | |
return f"You said: {message}" | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# AI Chatbot") | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(label="Message") | |
clear = gr.Button("Clear") | |
msg.submit(respond, [msg, chatbot], [chatbot]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Interactive chatbot interface", | |
components=["Chatbot", "Textbox", "Button"], | |
metadata={"category": "nlp"} | |
), | |
"audio_processor": Template( | |
code=""" | |
import gradio as gr | |
import numpy as np | |
def process_audio(audio, volume_factor=1.0): | |
if audio is None: | |
return None | |
sr, data = audio | |
return (sr, data * volume_factor) | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Audio Processor") | |
with gr.Row(): | |
with gr.Column(): | |
input_audio = gr.Audio(source="microphone", type="numpy") | |
volume = gr.Slider(minimum=0, maximum=2, value=1, label="Volume") | |
process_btn = gr.Button("Process") | |
with gr.Column(): | |
output_audio = gr.Audio(type="numpy") | |
process_btn.click( | |
fn=process_audio, | |
inputs=[input_audio, volume], | |
outputs=output_audio | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Audio processing interface", | |
components=["Audio", "Slider", "Button"], | |
metadata={"category": "audio"} | |
), | |
"file_processor": Template( | |
code=""" | |
import gradio as gr | |
def process_file(file): | |
if file is None: | |
return "No file uploaded" | |
return f"Processed file: {file.name}" | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# File Processor") | |
with gr.Row(): | |
with gr.Column(): | |
file_input = gr.File(label="Upload File") | |
process_btn = gr.Button("Process") | |
with gr.Column(): | |
output = gr.Textbox(label="Results") | |
json_output = gr.JSON(label="Detailed Results") | |
process_btn.click( | |
fn=process_file, | |
inputs=file_input, | |
outputs=[output, json_output] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="File processing interface", | |
components=["File", "Button", "Textbox", "JSON"], | |
metadata={"category": "utility"} | |
), | |
"data_visualization": Template( | |
code="" """ | |
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
def visualize_data(data, plot_type): | |
if data is None: | |
return None | |
df = pd.read_csv(data.name) | |
if plot_type == "scatter": | |
fig = px.scatter(df, x=df.columns[0], y=df.columns[1]) | |
elif plot_type == "line": | |
fig = px.line(df, x=df.columns[0], y=df.columns[1]) | |
else: | |
fig = px.bar(df, x=df.columns[0], y=df.columns[1]) | |
return fig | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Data Visualizer") | |
with gr.Row(): | |
with gr.Column(): | |
file_input = gr.File(label="Upload CSV") | |
plot_type = gr.Radio( | |
choices=["scatter", "line", "bar"], | |
label="Plot Type", | |
value="scatter" | |
) | |
visualize_btn = gr.Button("Visualize") | |
with gr.Column(): | |
plot_output = gr.Plot(label="Visualization") | |
visualize_btn.click( | |
fn=visualize_data, | |
inputs=[file_input, plot_type], | |
outputs=plot_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Data visualization interface", | |
components=["File", "Radio", "Button", "Plot"], | |
metadata={"category": "data_science"} | |
), | |
"form_builder": Template( | |
code=""" | |
import gradio as gr | |
import json | |
def submit_form(name, email, age, interests, subscribe): | |
return json.dumps({ | |
"name": name, | |
"email": email, | |
"age": age, | |
"interests": interests, | |
"subscribe": subscribe | |
}, indent=2) | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Form Builder") | |
with gr.Row(): | |
with gr.Column(): | |
name = gr.Textbox(label="Name") | |
email = gr.Textbox(label="Email") | |
age = gr.Number(label="Age") | |
interests = gr.CheckboxGroup( | |
choices=["Sports", "Music", "Art", "Technology"], | |
label="Interests" | |
) | |
subscribe = gr.Checkbox(label="Subscribe to newsletter") | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
output = gr.JSON(label="Form Data") | |
submit_btn.click( | |
fn=submit_form, | |
inputs=[name, email, age, interests, subscribe], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Form builder interface", | |
components=["Textbox", "Number", "CheckboxGroup", "Checkbox", "Button", "JSON"], | |
metadata={"category": "utility"} | |
), | |
"text_summarizer": Template( | |
code=""" | |
import gradio as gr | |
from transformers import pipeline | |
summarizer = pipeline("summarization") | |
def summarize_text(text): | |
summary = summarizer(text, max_length=150, min_length=40, do_sample=False) | |
return summary[0]['summary_text'] | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Text Summarizer") | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter text to summarize...") | |
summarize_btn = gr.Button("Summarize") | |
with gr.Column(): | |
summary_output = gr.Textbox(label="Summary", lines=5) | |
summarize_btn.click( | |
fn=summarize_text, | |
inputs=input_text, | |
outputs=summary_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Text summarization interface using a transformer model", | |
components=["Textbox", "Button"], | |
metadata={"category": "nlp"} | |
), | |
"image_captioner": Template( | |
code=""" | |
import gradio as gr | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
def generate_caption(image): | |
inputs = processor(image, return_tensors="pt") | |
out = model.generate(**inputs) | |
caption = processor.decode(out[0], skip_special_tokens=True) | |
return caption | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Image Caption Generator") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Upload Image") | |
caption_btn = gr.Button("Generate Caption") | |
with gr.Column(): | |
caption_output = gr.Textbox(label="Generated Caption") | |
caption_btn.click( | |
fn=generate_caption, | |
inputs=input_image, | |
outputs=caption_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Image captioning interface using a transformer model", | |
components=["Image", "Button", "Textbox"], | |
metadata={"category": "computer_vision"} | |
), | |
"style_transfer": Template( | |
code=""" | |
import gradio as gr | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') | |
def apply_style(content_image, style_image): | |
content_image = tf.image.convert_image_dtype(content_image, tf.float32)[tf.newaxis, ...] | |
style_image = tf.image.convert_image_dtype(style_image, tf.float32)[tf.newaxis, ...] | |
stylized_image = hub_model(content_image, style_image)[0] | |
return tf.squeeze(stylized_image).numpy() | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Neural Style Transfer") | |
with gr.Row(): | |
with gr.Column(): | |
content_image = gr.Image(label="Content Image") | |
style_image = gr.Image(label="Style Image") | |
transfer_btn = gr.Button("Transfer Style") | |
with gr.Column(): | |
output_image = gr.Image(label="Stylized Image") | |
transfer_btn.click( | |
fn=apply_style, | |
inputs=[content_image, style_image], | |
outputs=output_image | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Neural style transfer between two images", | |
components=["Image", "Button"], | |
metadata={"category": "computer_vision"} | |
), | |
"sentiment_analysis": Template( | |
code=""" | |
import gradio as gr | |
from transformers import pipeline | |
sentiment_pipeline = pipeline("sentiment-analysis") | |
def analyze_sentiment(text): | |
result = sentiment_pipeline(text)[0] | |
return f"{result['label']} ({result['score']:.2f})" | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Sentiment Analysis") | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input Text", lines=5, placeholder="Enter text to analyze sentiment...") | |
analyze_btn = gr.Button("Analyze Sentiment") | |
with gr.Column(): | |
sentiment_output = gr.Textbox(label="Sentiment Result") | |
analyze_btn.click( | |
fn=analyze_sentiment, | |
inputs=input_text, | |
outputs=sentiment_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Sentiment analysis using transformer model", | |
components=["Textbox", "Button"], | |
metadata={"category": "nlp"} | |
), | |
"pdf_to_text": Template( | |
code=""" | |
import gradio as gr | |
import PyPDF2 | |
def extract_text_from_pdf(pdf): | |
reader = PyPDF2.PdfFileReader(pdf) | |
text = '' | |
for page_num in range(reader.numPages): | |
page = reader.getPage(page_num) | |
text += page.extract_text() | |
return text | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# PDF to Text Extractor") | |
with gr.Row(): | |
with gr.Column(): | |
pdf_file = gr.File(label="Upload PDF") | |
extract_btn = gr.Button("Extract Text") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Extracted Text", lines=10) | |
extract_btn.click( | |
fn=extract_text_from_pdf, | |
inputs=pdf_file, | |
outputs=output_text | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Extract text from PDF files", | |
components=["File", "Button", "Textbox"], | |
metadata={"category": "utility"} | |
), | |
"website_monitor": Template( | |
code=""" | |
import gradio as gr | |
import requests | |
from datetime import datetime | |
def monitor_website(url): | |
try: | |
response = requests.get(url) | |
status_code = response.status_code | |
status = "Up" if status_code == 200 else "Down" | |
return { | |
"url": url, | |
"status": status, | |
"response_time": response.elapsed.total_seconds(), | |
"last_checked": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
} | |
except Exception as e: | |
return {"error": str(e)} | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Website Uptime Monitor") | |
with gr.Row(): | |
with gr.Column(): | |
url_input = gr.Textbox(label="Website URL", placeholder="https://example.com") | |
check_btn = gr.Button("Check Website") | |
with gr.Column(): | |
result_output = gr.JSON(label="Monitoring Result") | |
check_btn.click( | |
fn=monitor_website, | |
inputs=url_input, | |
outputs=result_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Monitor the uptime and response time of a website", | |
components=["Textbox", "Button", "JSON"], | |
metadata={"category": "web_monitoring"} | |
), | |
"rss_feed_fetcher": Template( | |
code=""" | |
import gradio as gr | |
import feedparser | |
def fetch_rss_feed(url): | |
feed = feedparser.parse(url) | |
if feed.bozo: | |
return {"error": "Invalid RSS feed URL"} | |
return [{"title": entry.title, "link": entry.link} for entry in feed.entries[:5]] | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# RSS Feed Fetcher") | |
with gr.Row(): | |
with gr.Column(): | |
feed_url = gr.Textbox(label="RSS Feed URL", placeholder="https://example.com/feed") | |
fetch_btn = gr.Button("Fetch Latest Posts") | |
with gr.Column(): | |
feed_output = gr.JSON(label="Latest Feed Entries") | |
fetch_btn.click( | |
fn=fetch_rss_feed, | |
inputs=feed_url, | |
outputs=feed_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Fetch the latest entries from an RSS feed", | |
components=["Textbox", "Button", "JSON"], | |
metadata={"category": "web_scraping"} | |
), | |
"web_scraper": Template( | |
code=""" | |
import gradio as gr | |
from bs4 import BeautifulSoup | |
import requests | |
def scrape_website(url, tag): | |
try: | |
response = requests.get(url) | |
soup = BeautifulSoup(response.text, "html.parser") | |
elements = soup.find_all(tag) | |
return [element.get_text() for element in elements][:5] # Limit to 5 elements | |
except Exception as e: | |
return f"Error: {str(e)}" | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Web Scraper") | |
with gr.Row(): | |
with gr.Column(): | |
url_input = gr.Textbox(label="Website URL", placeholder="https://example.com") | |
tag_input = gr.Textbox(label="HTML Tag to Scrape", placeholder="h1, p, div, etc.") | |
scrape_btn = gr.Button("Scrape Website") | |
with gr.Column(): | |
result_output = gr.JSON(label="Scraped Results") | |
scrape_btn.click( | |
fn=scrape_website, | |
inputs=[url_input, tag_input], | |
outputs=result_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Scrape text from a website based on the specified HTML tag", | |
components=["Textbox", "Button", "JSON"], | |
metadata={"category": "web_scraping"} | |
), | |
"api_tester": Template( | |
code=""" | |
import gradio as gr | |
import requests | |
def test_api(endpoint, method, payload): | |
try: | |
if method == "GET": | |
response = requests.get(endpoint) | |
elif method == "POST": | |
response = requests.post(endpoint, json=payload) | |
else: | |
return "Unsupported method" | |
return { | |
"status_code": response.status_code, | |
"response_body": response.json() if response.headers.get("Content-Type") == "application/json" else response.text | |
} | |
except Exception as e: | |
return {"error": str(e)} | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# API Tester") | |
with gr.Row(): | |
with gr.Column(): | |
endpoint = gr.Textbox(label="API Endpoint", placeholder="https://api.example.com/endpoint") | |
method = gr.Radio(choices=["GET", "POST"], label="HTTP Method", value="GET") | |
payload = gr.JSON(label="Payload (for POST)", value={}) | |
test_btn = gr.Button("Test API") | |
with gr.Column(): | |
result_output = gr.JSON(label="API Response") | |
test_btn.click( | |
fn=test_api, | |
inputs=[endpoint, method, payload], | |
outputs=result_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Test API endpoints with GET and POST requests", | |
components=["Textbox", "Radio", "JSON", "Button"], | |
metadata={"category": "api_testing"} | |
), | |
"email_scheduler": Template( | |
code=""" | |
import gradio as gr | |
import smtplib | |
from email.mime.text import MIMEText | |
from email.mime.multipart import MIMEMultipart | |
from apscheduler.schedulers.background import BackgroundScheduler | |
scheduler = BackgroundScheduler() | |
scheduler.start() | |
def send_email(to_email, subject, body): | |
try: | |
sender_email = "[email protected]" | |
password = "your_password" | |
msg = MIMEMultipart() | |
msg['From'] = sender_email | |
msg['To'] = to_email | |
msg['Subject'] = subject | |
msg.attach(MIMEText(body, 'plain')) | |
server = smtplib.SMTP('smtp.example.com', 587) | |
server.starttls() | |
server.login(sender_email, password) | |
text = msg.as_string() | |
server.sendmail(sender_email, to_email, text) | |
server.quit() | |
return "Email sent successfully" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def schedule_email(to_email, subject, body, delay): | |
scheduler.add_job(send_email, 'interval', seconds=delay, args=[to_email, subject, body]) | |
return f"Email scheduled to be sent in {delay} seconds" | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Email Scheduler") | |
with gr.Row(): | |
with gr.Column(): | |
to_email = gr.Textbox(label="Recipient Email") | |
subject = gr.Textbox(label="Subject") | |
body = gr.Textbox(label="Email Body", lines=5) | |
delay = gr.Slider(label="Delay (seconds)", minimum=10, maximum=300, step=10, value=60) | |
schedule_btn = gr.Button("Schedule Email") | |
with gr.Column(): | |
result_output = gr.Textbox(label="Result") | |
schedule_btn.click( | |
fn=schedule_email, | |
inputs=[to_email, subject, body, delay], | |
outputs=result_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Schedule emails to be sent after a delay", | |
components=["Textbox", "Slider", "Button"], | |
metadata={"category": "task_automation"} | |
), | |
"log_file_analyzer": Template( | |
code=""" | |
import gradio as gr | |
import re | |
def analyze_logs(log_file, filter_text): | |
try: | |
logs = log_file.read().decode("utf-8") | |
if filter_text: | |
filtered_logs = "\n".join([line for line in logs.splitlines() if re.search(filter_text, line)]) | |
else: | |
filtered_logs = logs | |
return filtered_logs | |
except Exception as e: | |
return f"Error: {str(e)}" | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Log File Analyzer") | |
with gr.Row(): | |
with gr.Column(): | |
log_input = gr.File(label="Upload Log File") | |
filter_input = gr.Textbox(label="Filter (Regex)", placeholder="Error|Warning") | |
analyze_btn = gr.Button("Analyze Logs") | |
with gr.Column(): | |
output_logs = gr.Textbox(label="Filtered Logs", lines=20) | |
analyze_btn.click( | |
fn=analyze_logs, | |
inputs=[log_input, filter_input], | |
outputs=output_logs | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Analyze and filter log files using regex", | |
components=["File", "Textbox", "Button"], | |
metadata={"category": "log_analysis"} | |
), | |
"file_encryption_tool": Template( | |
code=""" | |
import gradio as gr | |
from cryptography.fernet import Fernet | |
def encrypt_file(file, password): | |
try: | |
key = password.ljust(32, '0').encode()[:32] # Basic password -> key mapping | |
cipher = Fernet(Fernet.generate_key()) | |
file_data = file.read() | |
encrypted_data = cipher.encrypt(file_data) | |
return encrypted_data.decode("utf-8") | |
except Exception as e: | |
return f"Error: {str(e)}" | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# File Encryption Tool") | |
with gr.Row(): | |
with gr.Column(): | |
file_input = gr.File(label="Upload File") | |
password_input = gr.Textbox(label="Password", type="password") | |
encrypt_btn = gr.Button("Encrypt File") | |
with gr.Column(): | |
encrypted_output = gr.Textbox(label = "Encrypted Data", lines=20) | |
encrypt_btn.click( | |
fn=encrypt_file, | |
inputs=[file_input, password_input], | |
outputs=encrypted_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Encrypt a file using a password-based key", | |
components=["File", "Textbox", "Button"], | |
metadata={"category": "security"} | |
), | |
"task_scheduler": Template( | |
code=""" | |
import gradio as gr | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from datetime import datetime | |
scheduler = BackgroundScheduler() | |
scheduler.start() | |
def schedule_task(task_name, interval): | |
scheduler.add_job(lambda: print(f"Running task: {task_name} at {datetime.now()}"), 'interval', seconds=interval) | |
return f"Task '{task_name}' scheduled to run every {interval} seconds." | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Task Scheduler") | |
with gr.Row(): | |
with gr.Column(): | |
task_input = gr.Textbox(label="Task Name", placeholder="Example Task") | |
interval_input = gr.Slider(minimum=1, maximum=60, label="Interval (Seconds)", value=10) | |
schedule_btn = gr.Button("Schedule Task") | |
with gr.Column(): | |
result_output = gr.Textbox(label="Result") | |
schedule_btn.click( | |
fn=schedule_task, | |
inputs=[task_input, interval_input], | |
outputs=result_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Schedule tasks to run at regular intervals", | |
components=["Textbox", "Slider", "Button"], | |
metadata={"category": "task_automation"} | |
), | |
"code_comparator": Template( | |
code=""" | |
import gradio as gr | |
import difflib | |
def compare_code(code1, code2): | |
diff = difflib.unified_diff(code1.splitlines(), code2.splitlines(), lineterm='', fromfile='code1', tofile='code2') | |
return '\n'.join(diff) | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Code Comparator") | |
with gr.Row(): | |
with gr.Column(): | |
code1_input = gr.Textbox(label="Code 1", lines=15, placeholder="Paste the first code snippet here...") | |
code2_input = gr.Textbox(label="Code 2", lines=15, placeholder="Paste the second code snippet here...") | |
compare_btn = gr.Button("Compare Codes") | |
with gr.Column(): | |
diff_output = gr.Textbox(label="Difference", lines=20) | |
compare_btn.click( | |
fn=compare_code, | |
inputs=[code1_input, code2_input], | |
outputs=diff_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Compare two code snippets and show the differences", | |
components=["Textbox", "Button"], | |
metadata={"category": "development"} | |
), | |
"database_query_tool": Template( | |
code=""" | |
import gradio as gr | |
import sqlite3 | |
def query_database(db_file, query): | |
try: | |
conn = sqlite3.connect(db_file.name) | |
cursor = conn.cursor() | |
cursor.execute(query) | |
results = cursor.fetchall() | |
conn.close() | |
return results | |
except Exception as e: | |
return f"Error: {str(e)}" | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Database Query Tool") | |
with gr.Row(): | |
with gr.Column(): | |
db_input = gr.File(label="Upload SQLite DB File") | |
query_input = gr.Textbox(label="SQL Query", placeholder="SELECT * FROM table_name;") | |
query_btn = gr.Button("Run Query") | |
with gr.Column(): | |
query_output = gr.JSON(label="Query Results") | |
query_btn.click( | |
fn=query_database, | |
inputs=[db_input, query_input], | |
outputs=query_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Run SQL queries on a SQLite database", | |
components=["File", "Textbox", "Button", "JSON"], | |
metadata={"category": "database"} | |
), | |
"code_generator": Template( | |
code=""" | |
import gradio as gr | |
from transformers import pipeline | |
code_generator = pipeline("text-generation", model="Salesforce/codegen-2B-multi") | |
def generate_code(prompt): | |
response = code_generator(prompt, max_length=150, num_return_sequences=1) | |
return response[0]['generated_text'] | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Code Generator ") | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Enter Code Prompt", placeholder="Write a Python function to reverse a string") | |
generate_btn = gr.Button("Generate Code") | |
with gr.Column(): | |
generated_code = gr.Textbox(label="Generated Code", lines=10) | |
generate_btn.click( | |
fn=generate_code, | |
inputs=prompt_input, | |
outputs=generated_code | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Generate code snippets based on natural language prompts", | |
components=["Textbox", "Button"], | |
metadata={"category": "development"} | |
), | |
"code_debugger": Template( | |
code=""" | |
import gradio as gr | |
import subprocess | |
def debug_code(code): | |
try: | |
with open("temp_code.py", "w") as f: | |
f.write(code) | |
result = subprocess.run(["python3", "temp_code.py"], capture_output=True, text=True) | |
return {"stdout": result.stdout, "stderr": result.stderr} | |
except Exception as e: | |
return {"error": str(e)} | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Code Debugger") | |
with gr.Row(): | |
with gr.Column(): | |
code_input = gr.Textbox(label="Code to Debug", lines=10, placeholder="Paste your Python code here...") | |
debug_btn = gr.Button("Run Debug") | |
with gr.Column(): | |
debug_output = gr.JSON(label="Debug Output") | |
debug_btn.click( | |
fn=debug_code, | |
inputs=code_input, | |
outputs=debug_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Run and debug Python code by capturing stdout and stderr", | |
components=["Textbox", "Button", "JSON"], | |
metadata={"category": "development"} | |
), | |
"multi_agent_task_manager": Template( | |
code=""" | |
import gradio as gr | |
from concurrent.futures import ThreadPoolExecutor | |
import time | |
agent_pool = ThreadPoolExecutor(max_workers=5) | |
agent_status = {} | |
def agent_task(agent_name, task): | |
agent_status[agent_name] = "Running" | |
time.sleep(5) # Simulate task duration | |
agent_status[agent_name] = "Completed" | |
return f"Agent {agent_name} has completed the task: {task}" | |
def trigger_agents(agents, task): | |
results = [] | |
for agent in agents: | |
future = agent_pool.submit(agent_task, agent, task) | |
results.append(f"Agent {agent} triggered") | |
return results | |
def get_agent_status(): | |
return agent_status | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Multi-Agent Task Manager") | |
with gr.Row(): | |
with gr.Column(): | |
agents = gr.CheckboxGroup(choices=["Agent1", "Agent2", "Agent3", "Agent4", "Agent5"], label="Select Agents") | |
task_input = gr.Textbox(label="Task to Perform", placeholder="Describe the task...") | |
trigger_btn = gr.Button("Trigger Agents") | |
with gr.Column(): | |
task_output = gr.JSON(label="Agent Responses") | |
with gr.Row(): | |
status_btn = gr.Button("Get Agent Status") | |
status_output = gr.JSON(label="Current Agent Status") | |
trigger_btn.click( | |
fn=trigger_agents, | |
inputs=[agents, task_input], | |
outputs=task_output | |
) | |
status_btn.click( | |
fn=get_agent_status, | |
inputs=[], | |
outputs=status_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Manage and trigger tasks for multiple autonomous agents", | |
components=["CheckboxGroup", "Textbox", "Button", "JSON"], | |
metadata={"category": "task_automation"} | |
), | |
"auto_code_refactor": Template( | |
code=""" | |
import gradio as gr | |
from transformers import pipeline | |
code_refactor = pipeline("text2text-generation", model="facebook/bart-large-cnn") | |
def refactor_code(code): | |
result = code_refactor(f"Refactor the following Python code: {code}", max_length=150) | |
return result[0]['generated_text'] | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Auto Code Refactor") | |
with gr.Row(): | |
with gr.Column(): | |
code_input = gr.Textbox(label="Code to Refactor", lines=10, placeholder="Paste your Python code here...") | |
refactor_btn = gr.Button("Refactor Code") | |
with gr.Column(): | |
refactored_code = gr.Textbox(label="Refactored Code", lines =10) | |
refactor_btn.click( | |
fn=refactor_code, | |
inputs=code_input, | |
outputs=refactored_code | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Automatically refactor Python code for better efficiency or readability", | |
components=["Textbox", "Button"], | |
metadata={"category": "development"} | |
), | |
"agent_cluster_deployer": Template( | |
code=""" | |
import gradio as gr | |
import random | |
cluster_status = {} | |
def deploy_agent_cluster(agent_count, task): | |
cluster_id = random.randint(1000, 9999) | |
cluster_status[cluster_id] = { | |
"status": "Deploying", | |
"agents": agent_count, | |
"task": task | |
} | |
return f"Cluster {cluster_id} is deploying with {agent_count} agents for task: {task}" | |
def get_cluster_status(): | |
return cluster_status | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Agent Cluster Deployer") | |
with gr.Row(): | |
with gr.Column(): | |
agent_count = gr.Slider(label="Number of Agents", minimum=1, maximum=10, step=1, value=3) | |
task_input = gr.Textbox(label="Cluster Task", placeholder="Describe the task for the cluster...") | |
deploy_btn = gr.Button("Deploy Cluster") | |
with gr.Column(): | |
deploy_output = gr.Textbox(label="Cluster Deployment Status") | |
with gr.Row(): | |
status_btn = gr.Button("Get Cluster Status") | |
status_output = gr.JSON(label="Current Cluster Status") | |
deploy_btn.click( | |
fn=deploy_agent_cluster, | |
inputs=[agent_count, task_input], | |
outputs=deploy_output | |
) | |
status_btn.click( | |
fn=get_cluster_status, | |
inputs=[], | |
outputs=status_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""", | |
description="Deploy an autonomous agent cluster for task execution", | |
components=["Slider", "Textbox", "Button", "JSON"], | |
metadata={"category": "task_automation"} | |
) | |
} | |
self.component_index = self._build_component_index() | |
self.category_index = self._build_category_index() | |
def _build_component_index(self) -> Dict[str, List[str]]: | |
"""Build index of templates by component""" | |
index = {} | |
for name, template in self.templates.items(): | |
for component in template.components: | |
if component not in index: | |
index[component] = [] | |
index[component].append(name) | |
return index | |
def _build_category_index(self) -> Dict[str, List[str]]: | |
"""Build index of templates by category""" | |
index = {} | |
for name, template in self.templates.items(): | |
category = template.metadata.get("category", "other") | |
if category not in index: | |
index[category] = [] | |
index[category].append(name) | |
return index | |
def search(self, query: str, limit: int = 5) -> List[Dict]: | |
"""Search templates by description or metadata""" | |
try: | |
results = [] | |
for name, template in self.templates.items(): | |
desc_score = difflib.SequenceMatcher( | |
None, | |
query.lower(), | |
template.description.lower() | |
).ratio() | |
category_score = difflib.SequenceMatcher( | |
None, | |
query.lower(), | |
template.metadata.get("category", "").lower() | |
).ratio() | |
comp_score = sum(0.2 for component in template.components if component.lower() in query.lower()) | |
final_score = max(desc_score, category_score) + comp_score | |
results.append({ | |
"name": name, | |
"template": template, | |
"score": final_score | |
}) | |
results.sort(key=lambda x: x["score"], reverse=True) | |
return results[:limit] | |
except Exception as e: | |
logger.error(f"Error searching templates: {str(e)}") | |
return [] | |
def search_by_components(self, components: List[str], limit: int = 5) -> List[Dict]: | |
"""Search templates by required components""" | |
try: | |
results = [] | |
for name, template in self.templates.items(): | |
matches = sum(1 for c in components if c in template.components) | |
if matches > 0: | |
score = matches / len(components) | |
results.append({ | |
"name": name, | |
"template": template, | |
"score": score | |
}) | |
results.sort(key=lambda x: x["score"], reverse=True) | |
return results[:limit] | |
except Exception as e: | |
logger.error(f"Error searching by components: {str(e)}") | |
return [] | |
def search_by_category(self, category: str) -> List[Dict]: | |
"""Get all templates in a category""" | |
try: | |
return [ | |
{ | |
"name": name, | |
"template": self.templates[name] | |
} | |
for name in self.category_index.get(category, []) | |
] | |
except Exception as e: | |
logger.error(f"Error searching by category: {str(e)}") | |
return [] | |
def get_template(self, name: str) -> Optional[Template]: | |
"""Get specific template by name""" | |
return self.templates.get(name) | |
def get_categories(self) -> List[str]: | |
"""Get list of all categories""" | |
return list(self.category_index.keys()) | |
def get_components(self) -> List[str]: | |
"""Get list of all components""" | |
return list(self.component_index.keys()) | |
def export_templates(self, path: str): | |
"""Export templates to JSON file""" | |
try: | |
data = { | |
name: { | |
"description": template.description, | |
"components": template.components, | |
"metadata": template.metadata, | |
"example": template.example | |
} | |
for name, template in self.templates.items() | |
} | |
with open(path, 'w') as f: | |
json.dump(data, f, indent=2) | |
logger.info(f"Templates exported to {path}") | |
except Exception as e: | |
logger.error(f"Error exporting templates: {str(e)}") | |
raise | |
def import_templates(self, path: str): | |
"""Import templates from JSON file""" | |
try: | |
with open(path, 'r') as f: | |
data = json.load(f) | |
for name, template_data in data.items(): | |
self.templates[name] = Template( | |
code="", # Code should be loaded separately | |
description=template_data["description"], | |
components=template_data["components"], | |
metadata=template_data["metadata"], | |
example=template_data.get("example") | |
) | |
# Rebuild indexes | |
self.component_index = self._build_component_index() | |
self.category_index = self._build_category_index() | |
logger.info(f"Templates imported from {path}") | |
except Exception as e: | |
logger.error(f"Error importing templates: {str(e)}") | |
raise | |
# Usage example: | |
if __name__ == "__main__": | |
# Initialize template manager | |
manager = TemplateManager() | |
# Search examples | |
print("\nSearching for 'machine learning':") | |
results = manager.search("machine learning") | |
for result in results: | |
print(f"{result['name']}: {result['score']:.2f}") | |
print("\nSearching for components ['Image', 'Slider']:") | |
results = manager.search_by_components(['Image', 'Slider']) | |
for result in results: | |
print(f"{result['name']}: {result['score']:.2f}") | |
print("\nCategories available:") | |
print(manager.get_categories()) | |
print("\nComponents available:") | |
print(manager.get_components()) |