Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -21,50 +21,31 @@ transcribe_token_id = all_special_ids[-5]
|
|
21 |
translate_token_id = all_special_ids[-6]
|
22 |
|
23 |
|
24 |
-
def transcribe(microphone, task):
|
25 |
file = microphone
|
26 |
|
27 |
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
|
28 |
|
29 |
text = pipe(file)["text"]
|
30 |
|
31 |
-
return
|
32 |
|
33 |
|
34 |
-
def _return_yt_html_embed(yt_url):
|
35 |
-
video_id = yt_url.split("?v=")[-1]
|
36 |
-
HTML_str = (
|
37 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
38 |
-
" </center>"
|
39 |
-
)
|
40 |
-
return HTML_str
|
41 |
-
|
42 |
-
|
43 |
-
def yt_transcribe(yt_url, task):
|
44 |
-
yt = pt.YouTube(yt_url)
|
45 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
46 |
-
stream = yt.streams.filter(only_audio=True)[0]
|
47 |
-
stream.download(filename="audio.mp3")
|
48 |
-
|
49 |
-
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
|
50 |
-
|
51 |
-
text = pipe("audio.mp3")["text"]
|
52 |
-
|
53 |
-
return html_embed_str, text
|
54 |
-
|
55 |
-
|
56 |
-
demo = gr.Blocks()
|
57 |
|
58 |
mf_transcribe = gr.Interface(
|
59 |
fn=transcribe,
|
60 |
inputs=[
|
61 |
gr.Audio(source="microphone", type="filepath", optional=True),
|
62 |
-
gr.
|
63 |
],
|
64 |
-
outputs=
|
|
|
|
|
|
|
65 |
layout="horizontal",
|
66 |
theme="huggingface",
|
67 |
title="Whisper Large V2: Transcribe Audio",
|
|
|
68 |
description=(
|
69 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
70 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
@@ -76,5 +57,5 @@ mf_transcribe = gr.Interface(
|
|
76 |
|
77 |
|
78 |
|
79 |
-
|
80 |
|
|
|
21 |
translate_token_id = all_special_ids[-6]
|
22 |
|
23 |
|
24 |
+
def transcribe(microphone, state, task="transcribe"):
|
25 |
file = microphone
|
26 |
|
27 |
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
|
28 |
|
29 |
text = pipe(file)["text"]
|
30 |
|
31 |
+
return state + "\n" text, state + "\n" text
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
mf_transcribe = gr.Interface(
|
36 |
fn=transcribe,
|
37 |
inputs=[
|
38 |
gr.Audio(source="microphone", type="filepath", optional=True),
|
39 |
+
gr.State()
|
40 |
],
|
41 |
+
outputs=[
|
42 |
+
gr.Textbox(lines=15),
|
43 |
+
gr.State()]
|
44 |
+
,
|
45 |
layout="horizontal",
|
46 |
theme="huggingface",
|
47 |
title="Whisper Large V2: Transcribe Audio",
|
48 |
+
live=True,
|
49 |
description=(
|
50 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
51 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
|
|
57 |
|
58 |
|
59 |
|
60 |
+
mf_transcribe.launch(enable_queue=True)
|
61 |
|