Spaces:
Running
on
T4
Running
on
T4
import torch | |
import gradio as gr | |
import pytube as pt | |
from transformers import pipeline | |
MODEL_NAME = "openai/whisper-large-v2" | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
all_special_ids = pipe.tokenizer.all_special_ids | |
transcribe_token_id = all_special_ids[-5] | |
translate_token_id = all_special_ids[-6] | |
def transcribe(microphone, task): | |
file = microphone | |
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] | |
text = pipe(file)["text"] | |
return warn_output + text | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def yt_transcribe(yt_url, task): | |
yt = pt.YouTube(yt_url) | |
html_embed_str = _return_yt_html_embed(yt_url) | |
stream = yt.streams.filter(only_audio=True)[0] | |
stream.download(filename="audio.mp3") | |
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] | |
text = pipe("audio.mp3")["text"] | |
return html_embed_str, text | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(source="microphone", type="filepath", optional=True), | |
gr.Radio(["transcribe", "translate"], label="Task", default="transcribe"), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Large V2: Transcribe Audio", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
demo.launch(enable_queue=True) | |