Spaces:
Sleeping
Sleeping
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
from langchain_community.vectorstores import Chroma | |
import os | |
import gen_splits | |
GEMINI_API_KEY = os.environ.get('GEMINI_API_KEY') | |
# Using Google GenAI Text Embeddings | |
embedding_model = GoogleGenerativeAIEmbeddings(model="models/embedding-001", task_type="retrieval_document", google_api_key=GEMINI_API_KEY) | |
# Create Embeddings for Searching the Splits | |
persist_directory = './chroma/' | |
def initialize(): | |
splits = gen_splits.gen_splits() | |
vectordb = Chroma.from_documents(documents=splits, persist_directory=persist_directory, embedding=embedding_model) | |
vectordb.persist() | |
return vectordb | |
if __name__ == "__main__": | |
vectordb = initialize() | |