Spaces:
Runtime error
Runtime error
from abc import abstractmethod | |
import math | |
import numpy as np | |
import torch as th | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .fp16_util import convert_module_to_f16, convert_module_to_f32 | |
from .nn import ( | |
SiLU, | |
conv_nd, | |
linear, | |
avg_pool_nd, | |
zero_module, | |
normalization, | |
timestep_embedding, | |
checkpoint, | |
) | |
class TimestepBlock(nn.Module): | |
""" | |
Any module where forward() takes timestep embeddings as a second argument. | |
""" | |
def forward(self, x, emb): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
""" | |
A sequential module that passes timestep embeddings to the children that | |
support it as an extra input. | |
""" | |
def forward(self, x, emb): | |
for layer in self: | |
if isinstance(layer, TimestepBlock): | |
x = layer(x, emb) | |
else: | |
x = layer(x) | |
return x | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2): | |
super().__init__() | |
self.channels = channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = conv_nd(dims, channels, channels, 3, padding=1) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
x = F.interpolate( | |
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | |
) | |
else: | |
x = F.interpolate(x, scale_factor=2, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2): | |
super().__init__() | |
self.channels = channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = conv_nd(dims, channels, channels, 3, stride=stride, padding=1) | |
else: | |
self.op = avg_pool_nd(stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class ResBlock(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param use_checkpoint: if True, use gradient checkpointing on this module. | |
""" | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
use_conv=False, | |
use_scale_shift_norm=False, | |
dims=2, | |
use_checkpoint=False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
SiLU(), | |
conv_nd(dims, channels, self.out_channels, 3, padding=1), | |
) | |
self.emb_layers = nn.Sequential( | |
SiLU(), | |
linear( | |
emb_channels, | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, 3, padding=1 | |
) | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
def forward(self, x, emb): | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
return checkpoint( | |
self._forward, (x, emb), self.parameters(), self.use_checkpoint | |
) | |
def _forward(self, x, emb): | |
h = self.in_layers(x) | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = th.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
h = h + emb_out | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class AttentionBlock(nn.Module): | |
""" | |
An attention block that allows spatial positions to attend to each other. | |
Originally ported from here, but adapted to the N-d case. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. | |
""" | |
def __init__(self, channels, num_heads=1, use_checkpoint=False): | |
super().__init__() | |
self.channels = channels | |
self.num_heads = num_heads | |
self.use_checkpoint = use_checkpoint | |
self.norm = normalization(channels) | |
self.qkv = conv_nd(1, channels, channels * 3, 1) | |
self.attention = QKVAttention() | |
self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) | |
def forward(self, x): | |
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint) | |
def _forward(self, x): | |
b, c, *spatial = x.shape | |
x = x.reshape(b, c, -1) | |
qkv = self.qkv(self.norm(x)) | |
qkv = qkv.reshape(b * self.num_heads, -1, qkv.shape[2]) | |
h = self.attention(qkv) | |
h = h.reshape(b, -1, h.shape[-1]) | |
h = self.proj_out(h) | |
return (x + h).reshape(b, c, *spatial) | |
class QKVAttention(nn.Module): | |
""" | |
A module which performs QKV attention. | |
""" | |
def forward(self, qkv): | |
""" | |
Apply QKV attention. | |
:param qkv: an [N x (C * 3) x T] tensor of Qs, Ks, and Vs. | |
:return: an [N x C x T] tensor after attention. | |
""" | |
ch = qkv.shape[1] // 3 | |
q, k, v = th.split(qkv, ch, dim=1) | |
scale = 1 / math.sqrt(math.sqrt(ch)) | |
weight = th.einsum( | |
"bct,bcs->bts", q * scale, k * scale | |
) # More stable with f16 than dividing afterwards | |
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) | |
return th.einsum("bts,bcs->bct", weight, v) | |
def count_flops(model, _x, y): | |
""" | |
A counter for the `thop` package to count the operations in an | |
attention operation. | |
Meant to be used like: | |
macs, params = thop.profile( | |
model, | |
inputs=(inputs, timestamps), | |
custom_ops={QKVAttention: QKVAttention.count_flops}, | |
) | |
""" | |
b, c, *spatial = y[0].shape | |
num_spatial = int(np.prod(spatial)) | |
# We perform two matmuls with the same number of ops. | |
# The first computes the weight matrix, the second computes | |
# the combination of the value vectors. | |
matmul_ops = 2 * b * (num_spatial ** 2) * c | |
model.total_ops += th.DoubleTensor([matmul_ops]) | |
class UNetModel(nn.Module): | |
""" | |
The full UNet model with attention and timestep embedding. | |
:param in_channels: channels in the input Tensor. | |
:param model_channels: base channel count for the model. | |
:param out_channels: channels in the output Tensor. | |
:param num_res_blocks: number of residual blocks per downsample. | |
:param attention_resolutions: a collection of downsample rates at which | |
attention will take place. May be a set, list, or tuple. | |
For example, if this contains 4, then at 4x downsampling, attention | |
will be used. | |
:param dropout: the dropout probability. | |
:param channel_mult: channel multiplier for each level of the UNet. | |
:param conv_resample: if True, use learned convolutions for upsampling and | |
downsampling. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param num_classes: if specified (as an int), then this model will be | |
class-conditional with `num_classes` classes. | |
:param use_checkpoint: use gradient checkpointing to reduce memory usage. | |
:param num_heads: the number of attention heads in each attention layer. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
num_classes=None, | |
use_checkpoint=False, | |
num_heads=1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
): | |
super().__init__() | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
self.num_res_blocks = num_res_blocks | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.num_classes = num_classes | |
self.use_checkpoint = use_checkpoint | |
self.num_heads = num_heads | |
self.num_heads_upsample = num_heads_upsample | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
if self.num_classes is not None: | |
self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for _ in range(num_res_blocks): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
layers.append( | |
AttentionBlock( | |
ch, use_checkpoint=use_checkpoint, num_heads=num_heads | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
self.input_blocks.append( | |
TimestepEmbedSequential(Downsample(ch, conv_resample, dims=dims)) | |
) | |
input_block_chans.append(ch) | |
ds *= 2 | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
AttentionBlock(ch, use_checkpoint=use_checkpoint, num_heads=num_heads), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self.output_blocks = nn.ModuleList([]) | |
for level, mult in list(enumerate(channel_mult))[::-1]: | |
for i in range(num_res_blocks + 1): | |
layers = [ | |
ResBlock( | |
ch + input_block_chans.pop(), | |
time_embed_dim, | |
dropout, | |
out_channels=model_channels * mult, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = model_channels * mult | |
if ds in attention_resolutions: | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads_upsample, | |
) | |
) | |
if level and i == num_res_blocks: | |
layers.append(Upsample(ch, conv_resample, dims=dims)) | |
ds //= 2 | |
self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
self.out = nn.Sequential( | |
normalization(ch), | |
SiLU(), | |
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | |
) | |
def convert_to_fp16(self): | |
""" | |
Convert the torso of the model to float16. | |
""" | |
self.input_blocks.apply(convert_module_to_f16) | |
self.middle_block.apply(convert_module_to_f16) | |
self.output_blocks.apply(convert_module_to_f16) | |
def convert_to_fp32(self): | |
""" | |
Convert the torso of the model to float32. | |
""" | |
self.input_blocks.apply(convert_module_to_f32) | |
self.middle_block.apply(convert_module_to_f32) | |
self.output_blocks.apply(convert_module_to_f32) | |
def inner_dtype(self): | |
""" | |
Get the dtype used by the torso of the model. | |
""" | |
return next(self.input_blocks.parameters()).dtype | |
def forward(self, x, timesteps, y=None): | |
""" | |
Apply the model to an input batch. | |
:param x: an [N x C x ...] Tensor of inputs. | |
:param timesteps: a 1-D batch of timesteps. | |
:param y: an [N] Tensor of labels, if class-conditional. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
assert (y is not None) == ( | |
self.num_classes is not None | |
), "must specify y if and only if the model is class-conditional" | |
hs = [] | |
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) | |
if self.num_classes is not None: | |
assert y.shape == (x.shape[0],) | |
emb = emb + self.label_emb(y) | |
h = x.type(self.inner_dtype) | |
for module in self.input_blocks: | |
h = module(h, emb) | |
hs.append(h) | |
h = self.middle_block(h, emb) | |
for module in self.output_blocks: | |
cat_in = th.cat([h, hs.pop()], dim=1) | |
h = module(cat_in, emb) | |
h = h.type(x.dtype) | |
return self.out(h) | |
def get_feature_vectors(self, x, timesteps, y=None): | |
""" | |
Apply the model and return all of the intermediate tensors. | |
:param x: an [N x C x ...] Tensor of inputs. | |
:param timesteps: a 1-D batch of timesteps. | |
:param y: an [N] Tensor of labels, if class-conditional. | |
:return: a dict with the following keys: | |
- 'down': a list of hidden state tensors from downsampling. | |
- 'middle': the tensor of the output of the lowest-resolution | |
block in the model. | |
- 'up': a list of hidden state tensors from upsampling. | |
""" | |
hs = [] | |
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) | |
if self.num_classes is not None: | |
assert y.shape == (x.shape[0],) | |
emb = emb + self.label_emb(y) | |
result = dict(down=[], up=[]) | |
h = x.type(self.inner_dtype) | |
for module in self.input_blocks: | |
h = module(h, emb) | |
hs.append(h) | |
result["down"].append(h.type(x.dtype)) | |
h = self.middle_block(h, emb) | |
result["middle"] = h.type(x.dtype) | |
for module in self.output_blocks: | |
cat_in = th.cat([h, hs.pop()], dim=1) | |
h = module(cat_in, emb) | |
result["up"].append(h.type(x.dtype)) | |
return result | |
class SuperResModel(UNetModel): | |
""" | |
A UNetModel that performs super-resolution. | |
Expects an extra kwarg `low_res` to condition on a low-resolution image. | |
""" | |
def __init__(self, in_channels, *args, **kwargs): | |
super().__init__(in_channels * 2, *args, **kwargs) | |
def forward(self, x, timesteps, low_res=None, **kwargs): | |
_, _, new_height, new_width = x.shape | |
upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear") | |
x = th.cat([x, upsampled], dim=1) | |
return super().forward(x, timesteps, **kwargs) | |
def get_feature_vectors(self, x, timesteps, low_res=None, **kwargs): | |
_, new_height, new_width, _ = x.shape | |
upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear") | |
x = th.cat([x, upsampled], dim=1) | |
return super().get_feature_vectors(x, timesteps, **kwargs) | |