import spacy import gradio as gr from spacy.pipeline import EntityRuler from spacy import displacy import jsonlines nlp = spacy.load('en_core_web_sm') # Create list with entity labels from jsonl file with jsonlines.open("skill_patterns.jsonl") as f: created_entities = [line['label'].upper() for line in f.iter()] def extract_text_from_word(txt): '''Opens en reads in a .doc or .docx file from path''' return txt.replace('\n', ' ').replace('\t', ' ').lower() def add_newruler_to_pipeline(skill_pattern_path): '''Reads in all created patterns from a JSONL file and adds it to the pipeline after PARSER and before NER''' # new_ruler = EntityRuler(nlp).from_disk(skill_pattern_path) ruler=nlp.add_pipe("entity_ruler",after='parser') ruler.from_disk(skill_pattern_path) # loads patterns only def create_skill_set(doc): '''Create a set of the extracted skill entities of a doc''' return set([ent.label_.upper()[6:] for ent in doc.ents if 'skill' in ent.label_.lower()]) def create_skillset_dict(resume_names, resume_texts): '''Create a dictionary containing a set of the extracted skills. Name is key, matching skillset is value''' skillsets = [create_skill_set(resume_text) for resume_text in resume_texts] return dict(zip(resume_names, skillsets)) def match_skills(vacature_set, cv_set, resume_name): '''Get intersection of resume skills and job offer skills and return match percentage''' if len(vacature_set) < 1: print('could not extract skills from job offer text') else: pct_match = round(len(vacature_set.intersection(cv_set[resume_name])) / len(vacature_set) * 100, 0) print(resume_name + " has a {}% skill match on this job offer".format(pct_match)) print('Required skills: {} '.format(vacature_set)) print('Matched skills: {} \n'.format(vacature_set.intersection(skillset_dict[resume_name]))) return (resume_name, pct_match) add_newruler_to_pipeline("skill_patterns.jsonl") def match(CV,JD): resume_texts=[] resume_texts.append(nlp(CV)) resume_names=['ABHI'] skillset_dict = create_skillset_dict(resume_names, resume_texts) jd_skillset = create_skill_set(nlp(JD)) match_pairs = [match_skills(jd_skillset, skillset_dict, name) for name in skillset_dict.keys()] return match_pairs exp=["Who is steve jobs?","What is coldplay?","What is a turing test?","What is the most interesting thing about our universe?","What are the most beautiful places on earth?"] desc="This is a semantic search engine powered by SentenceTransformers (Nils_Reimers) with a retrieval and reranking system on Wikipedia corous. This will return the top 5 results. So Quest on with Transformers." inp1=gr.inputs.Textbox(lines=10, placeholder=None, default="", label="CV") inp2=gr.inputs.Textbox(lines=10, placeholder=None, default="", label="JD") out=gr.outputs.Textbox(type="auto",label="search results") iface = gr.Interface(fn=match, inputs=[inp1,inp2], outputs=[out],examples=[exp],article=desc,title="Neural Search Engine",theme="huggingface",layout='vertical') iface.launch()