abdullahmeda commited on
Commit
d00901f
·
verified ·
1 Parent(s): bd733d0

initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ data/gpt2-large-model filter=lfs diff=lfs merge=lfs -text
37
+ data/gpt2-medium-model filter=lfs diff=lfs merge=lfs -text
38
+ data/gpt2-small-model filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import joblib
3
+
4
+ import numpy as np
5
+ import pandas as pd
6
+ import gradio as gr
7
+
8
+ from nltk.data import load as nltk_load
9
+ from transformers import AutoTokenizer, AutoModelForCausalLM
10
+
11
+
12
+ NLTK = nltk_load('data/english.pickle')
13
+ sent_cut_en = NLTK.tokenize
14
+ clf = joblib.load(f'data/gpt2-large-model', 'rb')
15
+
16
+ model_id = 'gpt2-large'
17
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
18
+ model = AutoModelForCausalLM.from_pretrained(model_id)
19
+
20
+ CROSS_ENTROPY = torch.nn.CrossEntropyLoss(reduction='none')
21
+
22
+
23
+ def gpt2_features(text, tokenizer, model, sent_cut):
24
+ # Tokenize
25
+ input_max_length = tokenizer.model_max_length - 2
26
+ token_ids, offsets = list(), list()
27
+ sentences = sent_cut(text)
28
+ for s in sentences:
29
+ tokens = tokenizer.tokenize(s)
30
+ ids = tokenizer.convert_tokens_to_ids(tokens)
31
+ difference = len(token_ids) + len(ids) - input_max_length
32
+ if difference > 0:
33
+ ids = ids[:-difference]
34
+ offsets.append((len(token_ids), len(token_ids) + len(ids)))
35
+ token_ids.extend(ids)
36
+ if difference >= 0:
37
+ break
38
+
39
+ input_ids = torch.tensor([tokenizer.bos_token_id] + token_ids)
40
+ logits = model(input_ids).logits
41
+ # Shift so that n-1 predict n
42
+ shift_logits = logits[:-1].contiguous()
43
+ shift_target = input_ids[1:].contiguous()
44
+ loss = CROSS_ENTROPY(shift_logits, shift_target)
45
+
46
+ all_probs = torch.softmax(shift_logits, dim=-1)
47
+ sorted_ids = torch.argsort(all_probs, dim=-1, descending=True) # stable=True
48
+ expanded_tokens = shift_target.unsqueeze(-1).expand_as(sorted_ids)
49
+ indices = torch.where(sorted_ids == expanded_tokens)
50
+ rank = indices[-1]
51
+ counter = [
52
+ rank < 10,
53
+ (rank >= 10) & (rank < 100),
54
+ (rank >= 100) & (rank < 1000),
55
+ rank >= 1000
56
+ ]
57
+ counter = [c.long().sum(-1).item() for c in counter]
58
+
59
+
60
+ # compute different-level ppl
61
+ text_ppl = loss.mean().exp().item()
62
+ sent_ppl = list()
63
+ for start, end in offsets:
64
+ nll = loss[start: end].sum() / (end - start)
65
+ sent_ppl.append(nll.exp().item())
66
+ max_sent_ppl = max(sent_ppl)
67
+ sent_ppl_avg = sum(sent_ppl) / len(sent_ppl)
68
+ if len(sent_ppl) > 1:
69
+ sent_ppl_std = torch.std(torch.tensor(sent_ppl)).item()
70
+ else:
71
+ sent_ppl_std = 0
72
+
73
+ mask = torch.tensor([1] * loss.size(0))
74
+ step_ppl = loss.cumsum(dim=-1).div(mask.cumsum(dim=-1)).exp()
75
+ max_step_ppl = step_ppl.max(dim=-1)[0].item()
76
+ step_ppl_avg = step_ppl.sum(dim=-1).div(loss.size(0)).item()
77
+ if step_ppl.size(0) > 1:
78
+ step_ppl_std = step_ppl.std().item()
79
+ else:
80
+ step_ppl_std = 0
81
+ ppls = [
82
+ text_ppl, max_sent_ppl, sent_ppl_avg, sent_ppl_std,
83
+ max_step_ppl, step_ppl_avg, step_ppl_std
84
+ ]
85
+ return ppls + counter # type: ignore
86
+
87
+
88
+ def predict(features, classifier, id_to_label):
89
+ x = np.asarray([features])
90
+ pred = classifier.predict(x)[0]
91
+ prob = classifier.predict_proba(x)[0, pred]
92
+ return [id_to_label[pred], prob]
93
+
94
+
95
+ def predict(text):
96
+ with torch.no_grad():
97
+ feats = gpt2_features(text, tokenizer, model, sent_cut_en)
98
+ out = predict(*feats, clf, ['Human Written', 'LLM Generated'])
99
+ return out
100
+
101
+
102
+ with gr.Blocks() as demo:
103
+ gr.Markdown(
104
+ """
105
+ ## ChatGPT Detector 🔬 (Linguistic version / 语言学版)
106
+
107
+ Visit our project on Github: [chatgpt-comparison-detection project](https://github.com/Hello-SimpleAI/chatgpt-comparison-detection)<br>
108
+ 欢迎在 Github 上关注我们的 [ChatGPT 对比与检测项目](https://github.com/Hello-SimpleAI/chatgpt-comparison-detection)<br>
109
+ We provide three kinds of detectors, all in Bilingual / 我们提供了三个版本的检测器,且都支持中英文:
110
+ - [QA version / 问答版](https://www.modelscope.cn/studios/simpleai/chatgpt-detector-qa)<br>
111
+ detect whether an **answer** is generated by ChatGPT for certain **question**, using PLM-based classifiers / 判断某个**问题的回答**是否由ChatGPT生成,使用基于PTM的分类器来开发;
112
+ - [Sinlge-text version / 独立文本版](https://www.modelscope.cn/studios/simpleai/chatgpt-detector-single)<br>
113
+ detect whether a piece of text is ChatGPT generated, using PLM-based classifiers / 判断**单条文本**是否由ChatGPT生成,使用基于PTM的分类器来开发;
114
+ - [**Linguistic version / 语言学版** (👈 Current / 当前使用)](https://www.modelscope.cn/studios/simpleai/chatgpt-detector-ling)<br>
115
+ detect whether a piece of text is ChatGPT generated, using linguistic features / 判断**单条文本**是否由ChatGPT生成,使用基于语言学特征的模型来开发;
116
+
117
+ """
118
+ )
119
+
120
+ gr.Markdown(
121
+ """
122
+ ## Introduction:
123
+ Two Logistic regression models trained with two kinds of features:
124
+ 1. [GLTR](https://aclanthology.org/P19-3019) Test-2, Language model predict token rank top-k buckets, top 10, 10-100, 100-1000, 1000+.
125
+ 2. PPL-based, text ppl, sentence ppl, etc.
126
+
127
+ English LM is [GPT2-small](https://huggingface.co/gpt2).
128
+
129
+ Note: Providing more text to the `Text` box can make the prediction more accurate!
130
+ """
131
+ )
132
+ a1 = gr.Textbox(
133
+ lines=5, label='Text',
134
+ value="There are a few things that can help protect your credit card information from being misused when you give it to a restaurant or any other business:\n\nEncryption: Many businesses use encryption to protect your credit card information when it is being transmitted or stored. This means that the information is transformed into a code that is difficult for anyone to read without the right key."
135
+ )
136
+ button1 = gr.Button("🤖 Predict!")
137
+ gr.Markdown("GLTR")
138
+ label1_gltr = gr.Textbox(lines=1, label='GLTR Predicted Label 🎃')
139
+ score1_gltr = gr.Textbox(lines=1, label='GLTR Probability')
140
+
141
+ button1.click(predict, inputs=[a1], outputs=[label1_gltr, score1_gltr])
142
+
143
+ demo.launch()
data/english.pickle ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cad3758596392364e3be9803dbd7ebeda384b68937b488a01365f5551bb942c
3
+ size 406697
data/gpt2-large-model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f8a8c96268cfb0b109366d85a7d26f403aabcf5d411093596f670d384b1d7a9
3
+ size 918235392
data/gpt2-medium-model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:744b547d5540386486a4b6642be3a60b33d3d3ad12db513f82031cee5ebea6c7
3
+ size 932091008
data/gpt2-small-model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6aab895ebfc50e1168d70df9bb62837d14f8a78938943af1d1eaee280f427d15
3
+ size 976393968
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio==4.15.0
2
+ joblib==1.3.2
3
+ nltk==3.8.1
4
+ numpy==1.26.3
5
+ pandas==2.2.0
6
+ torch==2.1.2
7
+ transformers==4.37.0
8
+ xgboost
9
+ lightgbm
10
+ catboost