aarishshahmohsin
commited on
Commit
·
61db051
1
Parent(s):
d2ac162
done
Browse files- app.py +95 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
6 |
+
from datasets import load_dataset
|
7 |
+
|
8 |
+
# Model configurations
|
9 |
+
models = {
|
10 |
+
"Urdu Model": {
|
11 |
+
"checkpoint": "aarishshahmohsin/final_urdu_t5_finetuned",
|
12 |
+
"vocoder": "microsoft/speecht5_hifigan",
|
13 |
+
"processor": "aarishshahmohsin/urdu_processor_t5",
|
14 |
+
},
|
15 |
+
"Technical Model": {
|
16 |
+
"checkpoint": "aarishshahmohsin/final_technical_terms_t5_finetuned",
|
17 |
+
"vocoder": "microsoft/speecht5_hifigan",
|
18 |
+
"processor": "microsoft/speecht5_tts", # Using same checkpoint for processor
|
19 |
+
}
|
20 |
+
}
|
21 |
+
|
22 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
23 |
+
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
24 |
+
|
25 |
+
|
26 |
+
# Initialize all models at startup
|
27 |
+
print("Loading models...")
|
28 |
+
loaded_models = {}
|
29 |
+
for model_name, config in models.items():
|
30 |
+
processor = SpeechT5Processor.from_pretrained(config["processor"])
|
31 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(config["checkpoint"])
|
32 |
+
vocoder = SpeechT5HifiGan.from_pretrained(config["vocoder"])
|
33 |
+
|
34 |
+
loaded_models[model_name] = {
|
35 |
+
"processor": processor,
|
36 |
+
"model": model,
|
37 |
+
"vocoder": vocoder
|
38 |
+
}
|
39 |
+
print("Models loaded successfully!")
|
40 |
+
|
41 |
+
def predict(text, model_name):
|
42 |
+
if len(text.strip()) == 0:
|
43 |
+
return (16000, np.zeros(0).astype(np.int16))
|
44 |
+
|
45 |
+
model_components = loaded_models[model_name]
|
46 |
+
processor = model_components["processor"]
|
47 |
+
model = model_components["model"]
|
48 |
+
vocoder = model_components["vocoder"]
|
49 |
+
|
50 |
+
inputs = processor(text=text, return_tensors="pt")
|
51 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
|
52 |
+
speech = (speech.numpy() * 32767).astype(np.int16)
|
53 |
+
|
54 |
+
return (16000, speech)
|
55 |
+
|
56 |
+
# UI Configuration
|
57 |
+
title = "Multi-Model SpeechT5 Demo"
|
58 |
+
|
59 |
+
examples = [
|
60 |
+
# Urdu Model Examples
|
61 |
+
["میں نے آج بہت کام کیا۔", "Urdu Model"],
|
62 |
+
["آپ کا دن کیسا گزرا؟", "Urdu Model"],
|
63 |
+
|
64 |
+
# Technical Model Examples
|
65 |
+
["JSON response with HTTP status code 200.", "Technical Model"],
|
66 |
+
["Nginx is the best", "Technical Model"],
|
67 |
+
]
|
68 |
+
|
69 |
+
description = """
|
70 |
+
Select a model and enter text to generate speech.
|
71 |
+
|
72 |
+
1. Regional Language(Urdu)
|
73 |
+
2. Technical Speech
|
74 |
+
|
75 |
+
"""
|
76 |
+
|
77 |
+
# Create and launch the interface
|
78 |
+
gr.Interface(
|
79 |
+
fn=predict,
|
80 |
+
inputs=[
|
81 |
+
gr.Text(label="Input Text"),
|
82 |
+
gr.Dropdown(
|
83 |
+
choices=list(models.keys()),
|
84 |
+
label="Select Model",
|
85 |
+
value="Technical Model"
|
86 |
+
)
|
87 |
+
],
|
88 |
+
outputs=[
|
89 |
+
gr.Audio(label="Generated Speech", type="numpy"),
|
90 |
+
],
|
91 |
+
title=title,
|
92 |
+
description=description,
|
93 |
+
examples=examples, # Add examples to the interface
|
94 |
+
cache_examples=True,
|
95 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
datasets
|
3 |
+
librosa
|
4 |
+
torch
|
5 |
+
numpy
|