Spaces:
Runtime error
Runtime error
from abc import ABC, abstractmethod | |
from collections import Counter, deque | |
from typing import Any, Deque, Iterator, List, Dict | |
from pprint import pprint | |
from src.segments import merge_timestamps | |
# Workaround for https://github.com/tensorflow/tensorflow/issues/48797 | |
try: | |
import tensorflow as tf | |
except ModuleNotFoundError: | |
# Error handling | |
pass | |
import torch | |
import ffmpeg | |
import numpy as np | |
from src.utils import format_timestamp | |
from enum import Enum | |
class NonSpeechStrategy(Enum): | |
""" | |
Ignore non-speech frames segments. | |
""" | |
SKIP = 1 | |
""" | |
Just treat non-speech segments as speech. | |
""" | |
CREATE_SEGMENT = 2 | |
""" | |
Expand speech segments into subsequent non-speech segments. | |
""" | |
EXPAND_SEGMENT = 3 | |
# Defaults for Silero | |
SPEECH_TRESHOLD = 0.3 | |
MAX_SILENT_PERIOD = 10 # seconds | |
MAX_MERGE_SIZE = 150 # Do not create segments larger than 2.5 minutes | |
# Default segment padding | |
SEGMENT_PADDING_LEFT = 1 # Start detected text segment early | |
SEGMENT_PADDING_RIGHT = 1 # End detected segments late | |
# Minimum size of segments to process | |
MIN_SEGMENT_DURATION = 1 | |
# Always merge segments that are less than this duration apart | |
MIN_FORCE_MERGE_GAP = 0.5 | |
FORCE_MERGE_SEGMENT_MULTIPLIER = 1.5 | |
# The maximum time for texts from old segments to be used in the next segment | |
MAX_PROMPT_WINDOW = 0 # seconds (0 = disabled) | |
PROMPT_NO_SPEECH_PROB = 0.1 # Do not pass the text from segments with a no speech probability higher than this | |
VAD_MAX_PROCESSING_CHUNK = 60 * 60 # 60 minutes of audio | |
class AbstractTranscription(ABC): | |
def __init__(self, segment_padding_left: float = None, segment_padding_right = None, max_silent_period: float = None, | |
max_merge_size: float = None, non_speech_strategy: NonSpeechStrategy = NonSpeechStrategy.SKIP, max_prompt_window: float = None): | |
self.sampling_rate = 16000 | |
self.segment_padding_left = segment_padding_left | |
self.segment_padding_right = segment_padding_right | |
self.max_silent_period = max_silent_period | |
self.max_merge_size = max_merge_size | |
self.non_speech_strategy = non_speech_strategy | |
self.max_prompt_window = max_prompt_window | |
self.min_force_merge_gap = MIN_FORCE_MERGE_GAP | |
self.max_force_merge_size = max_merge_size * FORCE_MERGE_SEGMENT_MULTIPLIER if max_merge_size is not None else None | |
def get_audio_segment(self, str, start_time: str = None, duration: str = None): | |
return load_audio(str, self.sampling_rate, start_time, duration) | |
def get_transcribe_timestamps(self, audio: str): | |
""" | |
Get the start and end timestamps of the sections that should be transcribed by this VAD method. | |
Parameters | |
---------- | |
audio: str | |
The audio file. | |
Returns | |
------- | |
A list of start and end timestamps, in fractional seconds. | |
""" | |
return | |
def transcribe(self, audio: str, whisperCallable): | |
""" | |
Transcribe the given audo file. | |
Parameters | |
---------- | |
audio: str | |
The audio file. | |
whisperCallable: Callable[[Union[str, np.ndarray, torch.Tensor], str], dict[str, Union[dict, Any]]] | |
The callback that is used to invoke Whisper on an audio file/buffer. The first parameter is the audio file/buffer, | |
and the second parameter is an optional text prompt. The return value is the result of the Whisper call. | |
Returns | |
------- | |
A list of start and end timestamps, in fractional seconds. | |
""" | |
# get speech timestamps from full audio file | |
seconds_timestamps = self.get_transcribe_timestamps(audio) | |
#for seconds_timestamp in seconds_timestamps: | |
# print("VAD timestamp ", format_timestamp(seconds_timestamp['start']), " to ", format_timestamp(seconds_timestamp['end'])) | |
merged = merge_timestamps(seconds_timestamps, self.max_silent_period, self.max_merge_size, self.segment_padding_left, self.segment_padding_right) | |
# A deque of transcribed segments that is passed to the next segment as a prompt | |
prompt_window = deque() | |
print("Timestamps:") | |
pprint(merged) | |
if self.non_speech_strategy != NonSpeechStrategy.SKIP: | |
max_audio_duration = get_audio_duration(audio) | |
# Expand segments to include the gaps between them | |
if (self.non_speech_strategy == NonSpeechStrategy.CREATE_SEGMENT): | |
# When we have a prompt window, we create speech segments betwen each segment if we exceed the merge size | |
merged = self.fill_gaps(merged, total_duration=max_audio_duration, max_expand_size=self.max_merge_size) | |
elif self.non_speech_strategy == NonSpeechStrategy.EXPAND_SEGMENT: | |
# With no prompt window, it is better to just expand the segments (this effectively passes the prompt to the next segment) | |
merged = self.expand_gaps(merged, total_duration=max_audio_duration) | |
else: | |
raise Exception("Unknown non-speech strategy: " + str(self.non_speech_strategy)) | |
print("Transcribing non-speech:") | |
pprint(merged) | |
result = { | |
'text': "", | |
'segments': [], | |
'language': "" | |
} | |
languageCounter = Counter() | |
# For each time segment, run whisper | |
for segment in merged: | |
segment_start = segment['start'] | |
segment_end = segment['end'] | |
segment_expand_amount = segment.get('expand_amount', 0) | |
segment_duration = segment_end - segment_start | |
if segment_duration < MIN_SEGMENT_DURATION: | |
continue; | |
# Audio to run on Whisper | |
segment_audio = self.get_audio_segment(audio, start_time = str(segment_start), duration = str(segment_duration)) | |
# Previous segments to use as a prompt | |
segment_prompt = ' '.join([segment['text'] for segment in prompt_window]) if len(prompt_window) > 0 else None | |
print("Running whisper from ", format_timestamp(segment_start), " to ", format_timestamp(segment_end), ", duration: ", | |
segment_duration, "expanded: ", segment_expand_amount, "prompt: ", segment_prompt) | |
segment_result = whisperCallable(segment_audio, segment_prompt) | |
adjusted_segments = self.adjust_timestamp(segment_result["segments"], adjust_seconds=segment_start, max_source_time=segment_duration) | |
# Propagate expand amount to the segments | |
if (segment_expand_amount > 0): | |
segment_without_expansion = segment_duration - segment_expand_amount | |
for adjusted_segment in adjusted_segments: | |
adjusted_segment_end = adjusted_segment['end'] | |
# Add expand amount if the segment got expanded | |
if (adjusted_segment_end > segment_without_expansion): | |
adjusted_segment["expand_amount"] = adjusted_segment_end - segment_without_expansion | |
# Append to output | |
result['text'] += segment_result['text'] | |
result['segments'].extend(adjusted_segments) | |
# Increment detected language | |
languageCounter[segment_result['language']] += 1 | |
# Update prompt window | |
self.__update_prompt_window(prompt_window, adjusted_segments, segment_end) | |
if len(languageCounter) > 0: | |
result['language'] = languageCounter.most_common(1)[0][0] | |
return result | |
def __update_prompt_window(self, prompt_window: Deque, adjusted_segments: List, segment_end: float): | |
if (self.max_prompt_window is not None and self.max_prompt_window > 0): | |
# Add segments to the current prompt window | |
for segment in adjusted_segments: | |
if segment.get('no_speech_prob', 0) <= PROMPT_NO_SPEECH_PROB: | |
prompt_window.append(segment) | |
while (len(prompt_window) > 0): | |
first_end_time = prompt_window[0].get('end', 0) | |
# Time expanded in the segments should be discounted from the prompt window | |
first_expand_time = prompt_window[0].get('expand_amount', 0) | |
if (first_end_time - first_expand_time < segment_end - self.max_prompt_window): | |
prompt_window.popleft() | |
else: | |
break | |
def include_gaps(self, segments: Iterator[dict], min_gap_length: float, total_duration: float): | |
result = [] | |
last_end_time = 0 | |
for segment in segments: | |
segment_start = float(segment['start']) | |
segment_end = float(segment['end']) | |
if (last_end_time != segment_start): | |
delta = segment_start - last_end_time | |
if (min_gap_length is None or delta >= min_gap_length): | |
result.append( { 'start': last_end_time, 'end': segment_start, 'gap': True } ) | |
last_end_time = segment_end | |
result.append(segment) | |
# Also include total duration if specified | |
if (total_duration is not None and last_end_time < total_duration): | |
delta = total_duration - segment_start | |
if (min_gap_length is None or delta >= min_gap_length): | |
result.append( { 'start': last_end_time, 'end': total_duration, 'gap': True } ) | |
return result | |
# Expand the end time of each segment to the start of the next segment | |
def expand_gaps(self, segments: List[Dict[str, Any]], total_duration: float): | |
result = [] | |
if len(segments) == 0: | |
return result | |
# Add gap at the beginning if needed | |
if (segments[0]['start'] > 0): | |
result.append({ 'start': 0, 'end': segments[0]['start'], 'gap': True } ) | |
for i in range(len(segments) - 1): | |
current_segment = segments[i] | |
next_segment = segments[i + 1] | |
delta = next_segment['start'] - current_segment['end'] | |
# Expand if the gap actually exists | |
if (delta >= 0): | |
current_segment = current_segment.copy() | |
current_segment['expand_amount'] = delta | |
current_segment['end'] = next_segment['start'] | |
result.append(current_segment) | |
# Add last segment | |
last_segment = segments[-1] | |
result.append(last_segment) | |
# Also include total duration if specified | |
if (total_duration is not None): | |
last_segment = result[-1] | |
if (last_segment['end'] < total_duration): | |
last_segment = last_segment.copy() | |
last_segment['end'] = total_duration | |
result[-1] = last_segment | |
return result | |
def fill_gaps(self, segments: List[Dict[str, Any]], total_duration: float, max_expand_size: float = None): | |
result = [] | |
if len(segments) == 0: | |
return result | |
# Add gap at the beginning if needed | |
if (segments[0]['start'] > 0): | |
result.append({ 'start': 0, 'end': segments[0]['start'], 'gap': True } ) | |
for i in range(len(segments) - 1): | |
expanded = False | |
current_segment = segments[i] | |
next_segment = segments[i + 1] | |
delta = next_segment['start'] - current_segment['end'] | |
if (max_expand_size is not None and delta <= max_expand_size): | |
# Just expand the current segment | |
current_segment = current_segment.copy() | |
current_segment['expand_amount'] = delta | |
current_segment['end'] = next_segment['start'] | |
expanded = True | |
result.append(current_segment) | |
# Add a gap to the next segment if needed | |
if (delta >= 0 and not expanded): | |
result.append({ 'start': current_segment['end'], 'end': next_segment['start'], 'gap': True } ) | |
# Add last segment | |
last_segment = segments[-1] | |
result.append(last_segment) | |
# Also include total duration if specified | |
if (total_duration is not None): | |
last_segment = result[-1] | |
delta = total_duration - last_segment['end'] | |
if (delta > 0): | |
if (max_expand_size is not None and delta <= max_expand_size): | |
# Expand the last segment | |
last_segment = last_segment.copy() | |
last_segment['expand_amount'] = delta | |
last_segment['end'] = total_duration | |
result[-1] = last_segment | |
else: | |
result.append({ 'start': last_segment['end'], 'end': total_duration, 'gap': True } ) | |
return result | |
def adjust_timestamp(self, segments: Iterator[dict], adjust_seconds: float, max_source_time: float = None): | |
result = [] | |
for segment in segments: | |
segment_start = float(segment['start']) | |
segment_end = float(segment['end']) | |
# Filter segments? | |
if (max_source_time is not None): | |
if (segment_start > max_source_time): | |
continue | |
segment_end = min(max_source_time, segment_end) | |
new_segment = segment.copy() | |
# Add to start and end | |
new_segment['start'] = segment_start + adjust_seconds | |
new_segment['end'] = segment_end + adjust_seconds | |
result.append(new_segment) | |
return result | |
def multiply_timestamps(self, timestamps: List[Dict[str, Any]], factor: float): | |
result = [] | |
for entry in timestamps: | |
start = entry['start'] | |
end = entry['end'] | |
result.append({ | |
'start': start * factor, | |
'end': end * factor | |
}) | |
return result | |
class VadSileroTranscription(AbstractTranscription): | |
def __init__(self, segment_padding_left=SEGMENT_PADDING_LEFT, segment_padding_right=SEGMENT_PADDING_RIGHT, | |
max_silent_period=MAX_SILENT_PERIOD, max_merge_size=MAX_MERGE_SIZE, non_speech_strategy: NonSpeechStrategy = NonSpeechStrategy.SKIP, | |
max_prompt_window=MAX_PROMPT_WINDOW, copy = None): | |
super().__init__(segment_padding_left=segment_padding_left, segment_padding_right=segment_padding_right, | |
max_silent_period=max_silent_period, max_merge_size=max_merge_size, non_speech_strategy=non_speech_strategy, max_prompt_window=max_prompt_window) | |
if copy: | |
self.model = copy.model | |
self.get_speech_timestamps = copy.get_speech_timestamps | |
else: | |
self.model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad', model='silero_vad') | |
(self.get_speech_timestamps, _, _, _, _) = utils | |
def get_transcribe_timestamps(self, audio: str): | |
audio_duration = get_audio_duration(audio) | |
result = [] | |
# Divide procesisng of audio into chunks | |
chunk_start = 0.0 | |
while (chunk_start < audio_duration): | |
chunk_duration = min(audio_duration - chunk_start, VAD_MAX_PROCESSING_CHUNK) | |
print("Processing VAD in chunk from {} to {}".format(format_timestamp(chunk_start), format_timestamp(chunk_start + chunk_duration))) | |
wav = self.get_audio_segment(audio, str(chunk_start), str(chunk_duration)) | |
sample_timestamps = self.get_speech_timestamps(wav, self.model, sampling_rate=self.sampling_rate, threshold=SPEECH_TRESHOLD) | |
seconds_timestamps = self.multiply_timestamps(sample_timestamps, factor=1 / self.sampling_rate) | |
adjusted = self.adjust_timestamp(seconds_timestamps, adjust_seconds=chunk_start, max_source_time=chunk_start + chunk_duration) | |
#pprint(adjusted) | |
result.extend(adjusted) | |
chunk_start += chunk_duration | |
return result | |
# A very simple VAD that just marks every N seconds as speech | |
class VadPeriodicTranscription(AbstractTranscription): | |
def __init__(self, periodic_duration: float): | |
super().__init__() | |
self.periodic_duration = periodic_duration | |
def get_transcribe_timestamps(self, audio: str): | |
# Get duration in seconds | |
audio_duration = get_audio_duration(audio) | |
result = [] | |
# Generate a timestamp every N seconds | |
start_timestamp = 0 | |
while (start_timestamp < audio_duration): | |
end_timestamp = min(start_timestamp + self.periodic_duration, audio_duration) | |
segment_duration = end_timestamp - start_timestamp | |
# Minimum duration is 1 second | |
if (segment_duration >= 1): | |
result.append( { 'start': start_timestamp, 'end': end_timestamp } ) | |
start_timestamp = end_timestamp | |
return result | |
def get_audio_duration(file: str): | |
return float(ffmpeg.probe(file)["format"]["duration"]) | |
def load_audio(file: str, sample_rate: int = 16000, | |
start_time: str = None, duration: str = None): | |
""" | |
Open an audio file and read as mono waveform, resampling as necessary | |
Parameters | |
---------- | |
file: str | |
The audio file to open | |
sr: int | |
The sample rate to resample the audio if necessary | |
start_time: str | |
The start time, using the standard FFMPEG time duration syntax, or None to disable. | |
duration: str | |
The duration, using the standard FFMPEG time duration syntax, or None to disable. | |
Returns | |
------- | |
A NumPy array containing the audio waveform, in float32 dtype. | |
""" | |
try: | |
inputArgs = {'threads': 0} | |
if (start_time is not None): | |
inputArgs['ss'] = start_time | |
if (duration is not None): | |
inputArgs['t'] = duration | |
# This launches a subprocess to decode audio while down-mixing and resampling as necessary. | |
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed. | |
out, _ = ( | |
ffmpeg.input(file, **inputArgs) | |
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sample_rate) | |
.run(cmd="ffmpeg", capture_stdout=True, capture_stderr=True) | |
) | |
except ffmpeg.Error as e: | |
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") | |
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 |