Spaces:
Running
Running
File size: 7,254 Bytes
7c1eee1 f8f1d3f 7c1eee1 f8f1d3f 7c1eee1 ccbca0a f8f1d3f 5ff1dba f8f1d3f 5ff1dba f8f1d3f 7c1eee1 f8f1d3f 7c1eee1 3e3ca46 7c1eee1 d75a844 7c1eee1 3e3ca46 7c1eee1 f8f1d3f 52a119d 7c1eee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
from collections import namedtuple
from typing import List
ModelInfo = namedtuple("ModelInfo", ["simple_name", "link", "description"])
model_info = {}
def register_model_info(
full_names: List[str], simple_name: str, link: str, description: str
):
info = ModelInfo(simple_name, link, description)
for full_name in full_names:
model_info[full_name] = info
def get_model_info(name: str) -> ModelInfo:
if name in model_info:
return model_info[name]
else:
# To fix this, please use `register_model_info` to register your model
return ModelInfo(
name, "", "Register the description at fastchat/model/model_registry.py"
)
def get_model_description_md(model_list):
model_description_md = """
| | | |
| ---- | ---- | ---- |
"""
ct = 0
visited = set()
for i, name in enumerate(model_list):
minfo = get_model_info(name)
if minfo.simple_name in visited:
continue
visited.add(minfo.simple_name)
one_model_md = f"[{minfo.simple_name}]({minfo.link}): {minfo.description}"
if ct % 3 == 0:
model_description_md += "|"
model_description_md += f" {one_model_md} |"
if ct % 3 == 2:
model_description_md += "\n"
ct += 1
return model_description_md
# regist text-to-shape generation models
register_model_info(
["dreamfusion"],
"DreamFusion",
"https://dreamfusion3d.github.io/",
"Text-to-3D using 2D Diffusion and SDS Loss",
)
register_model_info(
["fantasia3d"],
"Fantasia3D",
"https://fantasia3d.github.io/",
"Disentangling Geometry and Appearance for High-quality Text-to-3D Content Creation",
)
register_model_info(
["instant3d"],
"Instant3D",
"https://jiahao.ai/instant3d/",
"Fast Text-to-3D with Sparse-View Generation and Large Reconstruction Model",
)
register_model_info(
["latent-nerf"],
"Latent-NeRF",
"https://github.com/eladrich/latent-nerf",
"Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures",
)
register_model_info(
["magic3d"],
"Magic3D",
"https://research.nvidia.com/labs/dir/magic3d/",
"High-Resolution Text-to-3D Content Creation",
)
register_model_info(
["geodream"],
"GeoDream",
"https://mabaorui.github.io/GeoDream_page/",
"Disentangling 2D and Geometric Priors for High-Fidelity and Consistent 3D Generation",
)
register_model_info(
["lucid-dreamer"],
"LucidDreamer",
"https://github.com/EnVision-Research/LucidDreamer",
"Towards High-Fidelity Text-to-3D Generation via Interval Score Matching",
)
register_model_info(
["mvdream"],
"MVDream",
"https://github.com/bytedance/MVDream",
"Multi-view Diffusion for 3D Generation",
)
register_model_info(
["grm-t", "grm-i"],
"GRM",
"https://justimyhxu.github.io/projects/grm",
"GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation",
)
register_model_info(
["point-e-t", "point-e-i"],
"Point·E",
"https://github.com/openai/point-e",
"A System for Generating 3D Point Clouds from Complex Prompts",
)
register_model_info(
["shap-e-t", "shap-e-i"],
"Shap-E",
"https://github.com/openai/shap-e",
"Generating Conditional 3D Implicit Functions",
)
register_model_info(
["prolificdreamer"],
"ProlificDreamer",
"https://ml.cs.tsinghua.edu.cn/prolificdreamer/",
"High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation",
)
register_model_info(
["sjc"],
"Score Jacobian Chaining",
"https://pals.ttic.edu/p/score-jacobian-chaining",
"Lifting Pretrained 2D Diffusion Models for 3D Generation",
)
# register_model_info(
# [],
# "",
# "",
# "",
# )
## regist image-to-shape generation models
register_model_info(
["dreamgaussian"],
"DreamGaussian",
"https://github.com/dreamgaussian/dreamgaussian",
"Generative Gaussian Splatting for Efficient 3D Content Creation",
)
register_model_info(
["wonder3d"],
"Wonder3D",
"https://github.com/xxlong0/Wonder3D",
"Single Image to 3D using Cross-Domain Diffusion",
)
register_model_info(
["dreamcraft3d"],
"Dreamcraft3d",
"https://github.com/deepseek-ai/DreamCraft3D",
"Hierarchical 3d generation with bootstrapped diffusion prior",
)
register_model_info(
["syncdreamer"],
"SyncDreamer",
"https://github.com/liuyuan-pal/SyncDreamer",
"Generating Multiview-consistent Images from a Single-view Image",
)
register_model_info(
["zero123"],
"Zero-1-to-3",
"https://github.com/cvlab-columbia/zero123",
"Zero-shot One Image to 3D Object",
)
register_model_info(
["stable-zero123"],
"Stable Zero123",
"https://stability.ai/news/stable-zero123-3d-generation",
"Quality 3D Object Generation from Single Images",
)
register_model_info(
["zero123-xl"],
"Zero123-XL",
"https://stability.ai/news/stable-zero123-3d-generation",
"Quality 3D Object Generation from Single Images",
)
register_model_info(
["magic123"],
"Magic123",
"https://guochengqian.github.io/project/magic123/",
"One Image to High-Quality 3D Object Generation Using Both 2D and 3D Diffusion Priors",
)
register_model_info(
["imagedream"],
"ImageDream",
"https://github.com/bytedance/ImageDream",
"Image-Prompt Multi-view Diffusion for 3D Generation",
)
register_model_info(
["make-it-3d"],
"Make-It-3D",
"https://github.com/junshutang/Make-It-3D",
"High-Fidelity 3D Creation from A Single Image with Diffusion Prior",
)
register_model_info(
["triplane-gaussian"],
"TriplaneGaussian",
"https://github.com/VAST-AI-Research/TriplaneGaussian",
"Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D Reconstruction with Transformers",
)
register_model_info(
["free3d"],
"Free3D",
"https://github.com/lyndonzheng/Free3D",
"Consistent Novel View Synthesis without 3D Representation",
)
register_model_info(
["escher-net"],
"EscherNet",
"https://github.com/kxhit/EscherNet",
"A Generative Model for Scalable View Synthesis",
)
register_model_info(
["v3d"],
"V3D",
"https://github.com/heheyas/V3D",
"Video Diffusion Models are Effective 3D Generators",
)
register_model_info(
["lgm"],
"LGM",
"https://github.com/3DTopia/LGM",
"Large Multi-View Gaussian Model for High-Resolution 3D Content Creation",
)
register_model_info(
["gsgen"],
"GSGEN",
"https://github.com/gsgen3d/gsgen",
"Text-to-3D using Gaussian Splatting",
)
register_model_info(
["openlrm"],
"OpenLRM",
"https://github.com/3DTopia/OpenLRM",
"Open-Source Large Reconstruction Models",
)
register_model_info(
["hifa"],
"HiFA",
"https://github.com/JunzheJosephZhu/HiFA",
"High-fidelity Text-to-3D Generation with Advanced Diffusion Guidance",
)
register_model_info(
["instant-mesh"],
"InstantMesh",
"https://github.com/TencentARC/InstantMesh",
"Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models",
)
# register_model_info(
# [],
# "",
# "",
# "",
# )
|