Zethris-Temporal-Loom's picture
Update app.py
6078566 verified
import hashlib
import os
from abc import ABC, abstractmethod
from glob import glob
from typing import Union
from uuid import uuid4
import faiss
import gradio as gr
import numpy as np
import openai
import torch
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.document_loaders import (BSHTMLLoader, CSVLoader,
JSONLoader, PyPDFLoader,
TextLoader)
from langchain_community.vectorstores import FAISS
from langchain_core.documents import Document
from sentence_transformers import SentenceTransformer
from transformers import AutoModel, AutoTokenizer
import os
from groq import Groq
from dotenv import load_dotenv
import time
import json
import os
load_dotenv()
INDEX_PATH = os.path.join(os.getcwd(), "static")
print(INDEX_PATH)
pdf_prompt = """
You are a helpful Employee Handbook assistant, designed to provide concise, accurate, and relevant information from folio3 (our company) internal handbook. Your role is to answer questions clearly, focusing on one topic at a time while remaining formal yet personable.
Tone: Maintain a formal tone suited for office communication, but ensure it’s friendly and approachable to foster engagement.
Responses:
Always greet the user warmly.
Provide brief answers when possible, but if the user asks follow-up questions, offer more detailed explanations.
If the user asks multiple questions, respond to each briefly, ensuring clarity without overwhelming the user.
Numeric Data: Always bold numerical information such as expenses (e.g., 2000/-) and time periods (e.g., 2 months), and keep them unchanged from the input.
Summarization: Summarize information effectively, extracting key details from the handbook without lengthening responses unnecessarily.
User Engagement: Avoid asking multiple questions at once. Instead, facilitate clear communication with a focus on being helpful and concise.
Sensitive Information: Share all relevant handbook information openly, as it is accessible to all employees.
At all times, remain professional, respectful, and supportive in your responses, guiding users to the information they need in the clearest way possible.
"""
html_prompt = """
You are an expert on the input text extracted from HTML pages and can provide relevant answers to questions based on this information. Your primary role is to ensure that the information you provide is accurate, relevant, and based solely on the content from the text.
Tone: Maintain a friendly and helpful tone to engage the user effectively.
Responses:
Answer all user questions briefly, but if they ask multiple questions in one prompt, respond to each one concisely.
After answering, invite the user to ask more specific questions if they need further details.
Error Handling: If the input text does not contain relevant information, clearly state that no information is found. Do not create or fabricate answers.
Always prioritize clarity and relevance, helping the user get the most accurate and direct information possible.
"""
chat_prompt = """
You are an expert on the input text, which contains JSON data representing a Google Chat dump. Your role is to provide accurate and relevant answers to user questions based on the content of the chats.
Tone: Maintain a neutral, factual, and helpful tone in all responses.
Responses:
Focus on answering questions about the content of the chat. If a user asks a follow-up or more specific question, you may include the timestamp but avoid including the message ID.
If the user asks about multiple messages, provide a brief response for each one and encourage the user to ask for more details if needed.
If no relevant information is found, clearly state that no relevant information is available without making up any data.
Context: Include who said what in the chat and the context of the conversation, if available. Ensure responses are concise and directly answer the user's query.
Error Handling: If any data is missing or the query cannot be answered due to incomplete information, briefly specify the error (e.g., "No speaker information found").
"""
api_key = os.getenv("OPEN_API_KEY")
if api_key:
print("OpenAI: API Key retrieved successfully.")
openai.api_key = api_key
else:
print("OpenAI: API Key not found. Please set the environment variable.")
groq_api_key = os.environ.get("GROQ_KEY")
if groq_api_key:
print("GROQ Key retrieved successfully.")
PORT = os.environ.get("PORT")
print(f"PORT: {PORT}")
def find_key(
nested_structure: Union[list, dict], key_to_find: str
) -> Union[dict, None]:
# TODO: Move this to utils
"""
Recursively searches for a specified key within a nested structure that can be
either a list or a dictionary. If the key is found, returns the value associated with the key.
The search proceeds depth-first through dictionaries and iterates through lists.
:param nested_structure: (Union[list, dict]) The nested structure to search through.
It can be a complex structure containing nested lists and dictionaries.
:param key_to_find: (str) The key to search for in the nested structure.
Returns a unique id.
Example of a nested structure and how to call this function:
[
[[],{}],
[[],{}],
[[],{
'data': {
'product':{'name':'imac'}
},
'metadata':{}
}],
]
Example output
{'name':'imac'}
:returns: Union[dict, None]: The value associated with the specified key if found; otherwise, None.
:returns: str: A unique id.
"""
# Check if the current element is a dictionary
if isinstance(nested_structure, dict):
# If the dictionary has the specified key, return the value
if key_to_find in nested_structure:
return nested_structure[key_to_find]
# Otherwise, recursively search each value in the dictionary
else:
for key, value in nested_structure.items():
result = find_key(
value, key_to_find
) # Fixed: added key_to_find in recursive call
if result:
return result
# Check if the current element is a list
elif isinstance(nested_structure, list):
# Recursively search each item in the list
for item in nested_structure:
result = find_key(
item, key_to_find
) # Fixed: added key_to_find in recursive call
if result:
return result
class Metadata(ABC):
def __init__(self) -> None:
super().__init__()
self.documents = []
self.ids = []
def generate_ids(self):
self.ids = [str(uuid4()) for _ in self.documents]
@abstractmethod
def load(self):
# Loading Documents
pass # This method should be implemented by child classes
@abstractmethod
def generate_metadata(self, *args, **kwargs):
pass # This method should be implemented by child classes
class Pdf(Metadata):
def __init__(self, files_path: list) -> None:
super().__init__()
self.files_path = files_path
def load(self):
self.load_pdfs()
self.generate_ids()
def load_pdfs(self) -> list:
for file_path in self.files_path:
loader = PyPDFLoader(file_path)
pages = loader.load_and_split()
for page in pages:
page.metadata = self.generate_metadata(page=page)
self.documents.extend(pages)
def generate_metadata(self, *args, **kwargs):
page = kwargs.get("page")
page.metadata["test"] = 1
return page.metadata
class Json(Metadata):
def __init__(
self,
file_path: str,
jq_schema: str = ".",
content_key: str = None,
metadata_keys: list = [],
) -> None:
super().__init__()
self.file_path = file_path
self.jq_schema = jq_schema
self.content_key = content_key
self.metadata_keys = metadata_keys
def load(self):
self.load_json()
self.generate_ids()
def load_json(self):
if self.metadata_keys:
loader = JSONLoader(
file_path=self.file_path,
jq_schema=self.jq_schema,
content_key=self.content_key,
metadata_func=self.generate_metadata,
)
elif self.content_key:
loader = JSONLoader(
file_path=self.file_path,
jq_schema=self.jq_schema,
content_key=self.content_key,
text_content=False,
)
else:
loader = JSONLoader(
file_path=self.file_path, jq_schema=self.jq_schema, text_content=False
)
pages = loader.load()
self.documents.extend(pages)
def generate_metadata(self, record: dict, metadata: dict) -> dict:
for key in self.metadata_keys:
value = find_key(record, key)
if value:
metadata[key] = value
return metadata
class Csv(Metadata):
def __init__(
self, file_path: str, csv_args: dict = None, source_column: str = None
) -> None:
super().__init__()
self.file_path = file_path
self.csv_args = csv_args
self.source_column = source_column
def load(self):
self.load_csv()
self.generate_ids()
def load_csv(self):
if self.csv_args:
# Example args:
"""
csv_args={
'delimiter': ',',
'quotechar': '"',
'fieldnames': ['MLB Team', 'Payroll in millions', 'Wins']
}
"""
loader = CSVLoader(file_path=self.file_path, csv_args=self.csv_args)
elif self.source_column:
loader = CSVLoader(
file_path=self.file_path, source_column=self.source_column
)
else:
loader = CSVLoader(file_path=self.file_path)
pages = loader.load()
for page in pages:
page.metadata = self.generate_metadata(page=page)
self.documents.extend(pages)
def generate_metadata(self, *args, **kwargs):
page = kwargs.get("page")
page.metadata["length"] = len(page.page_content)
return page.metadata
class Text(Metadata):
def __init__(self, files_path: list) -> None:
super().__init__()
self.files_path = files_path
def load(self):
self.load_texts()
self.generate_ids()
def load_texts(self):
for file_path in self.files_path:
loader = TextLoader(file_path)
pages = loader.load()
# TODO: Do Chunking if required
for page in pages:
page.metadata = self.generate_metadata(page=page)
self.documents.extend(pages)# Use Groq API for response generation
api_key = os.environ.get("GROQ_KEY")
print(f"Using Groq API Key: {api_key}")
if not api_key:
raise ValueError("GROQ_KEY environment variable not set!")
def generate_metadata(self, *args, **kwargs):
page = kwargs.get("page")
page.metadata["length"] = len(page.page_content)
return page.metadata
class Html(Metadata):
def __init__(self, files_path: list) -> None:
super().__init__()
self.files_path = files_path
def load(self):
self.load_html()
self.generate_ids()
def load_html(self):
for file_path in self.files_path:
loader = BSHTMLLoader(file_path, bs_kwargs={"features": "html.parser"})
pages = loader.load()
for page in pages:
page.metadata = self.generate_metadata(page=page)
self.documents.extend(pages)
def generate_metadata(self, *args, **kwargs):
page = kwargs.get("page")
page.metadata["length"] = len(page.page_content)
return page.metadata
class Image(Metadata):
def __init__(self, directory_path: str, extension: str = None) -> None:
super().__init__()
self.directory_path = directory_path
self.extension = extension
self.documents = []
def load(self):
self.load_images()
self.generate_ids()
def load_images(self):
if self.extension:
pattern = os.path.join(self.directory_path, f"**/*{self.extension}")
else:
pattern = os.path.join(self.directory_path, "**/*")
image_paths = glob(pattern, recursive=True)
print(image_paths)
for image_path in image_paths:
self.documents.append(
Document(page_content=image_path, metadata={"image_path": image_path})
)
def generate_metadata(self, *args, **kwargs):
pass
# TODO: add support for Python source code files , Markdown etc
class Model(ABC):
def __init__(self, model_name: str, system_prompt: str) -> None:
super().__init__()
self.model = None
self.system_prompt = system_prompt
self.model_name = model_name
self.device = (
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
)
@abstractmethod
def get_embeddings(self, input_text: str):
pass # This method should be implemented by child classes
@abstractmethod
def get_embedding_dimension(self, dummy_text: str = "Hello World!"):
pass # This method should be implemented by child classes
class MiniLM_L6_v2(Model):
def __init__(self, model_name: str, system_prompt) -> None:
super().__init__(model_name, system_prompt)
self.model = SentenceTransformer("all-MiniLM-L6-v2")
def get_embedding_dimension(self, dummy_text: str = "Hello World!"):
return len(self.get_embeddings(dummy_text))
def get_embeddings(self, input_text: str):
embeddings = self.model.encode(input_text)
return embeddings
class TextEmbedding3Large(Model):
def __init__(self, model_name: str, system_prompt) -> None:
super().__init__(model_name, system_prompt)
def get_embedding_dimension(self, dummy_text: str = "Hello World!"):
return len(self.get_embeddings(dummy_text))
def get_embeddings(self, input_text: str):
if isinstance(input_text, str):
input_text = [input_text]
response = openai.Embedding.create(model=self.model_name, input=input_text)
embeddings = [data["embedding"] for data in response["data"]]
embeddings = np.array(embeddings).astype("float32")
if embeddings.ndim == 2 and embeddings.shape[0] == 1:
embeddings = embeddings.flatten()
return embeddings
# TODO: Complete it for cosine similiarity
# For Cosine Similiarity
# if embeddings.ndim == 1: # Single embedding
# return embeddings / np.linalg.norm(embeddings)
# return embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
class UAE_Large_V1(Model):
def __init__(
self,
model_name: str,
system_prompt,
cache_dir: str = INDEX_PATH,
) -> None:
super().__init__(model_name, system_prompt)
self.cache_dir = cache_dir
self.model, self.tokenizer = self.load_or_download_model_and_tokenizer()
def load_or_download_model_and_tokenizer(self):
model_path = os.path.join(self.cache_dir, "_model.pt")
tokenizer_path = os.path.join(self.cache_dir, "_tokenizer")
print(model_path, tokenizer_path)
if not os.path.exists(self.cache_dir):
os.makedirs(self.cache_dir)
if os.path.exists(model_path) and os.path.exists(tokenizer_path):
print(f"Loading model and tokenizer from {self.cache_dir}")
model = torch.load(model_path)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
else:
print(f"Downloading and saving model and tokenizer to {self.cache_dir}")
model = AutoModel.from_pretrained(self.model_name)
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
torch.save(model, model_path)
tokenizer.save_pretrained(tokenizer_path)
return model, tokenizer
def get_embedding_dimension(self, dummy_text: str = "Hello World!"):
embeddings = self.get_embeddings(dummy_text)
return len(embeddings)
def get_embeddings(self, input_text: str):
if isinstance(input_text, str):
input_text = [input_text]
inputs = self.tokenizer(
input_text,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
with torch.no_grad():
last_hidden_state = self.model(**inputs, return_dict=True).last_hidden_state
embeddings = last_hidden_state[:, 0]
embeddings = embeddings.cpu().numpy()
if embeddings.ndim == 2 and embeddings.shape[0] == 1:
embeddings = embeddings.flatten()
return embeddings
# TODO: Complete implementation
class CliForImages(Model):
def __init__(self, model_name: str, system_prompt: str) -> None:
super().__init__(model_name, system_prompt)
self.model = SentenceTransformer("clip-ViT-B-32")
def get_embedding_dimension(
self,
dummy_text: str = "",
):
return len(self.get_embeddings(dummy_text))
def get_embeddings(self, input_text: str):
# TODO: complete this function
pass
class VectorSpace:
def __init__(self, model, file_path_to_save_or_load) -> None:
self.model = model
self.file_path = file_path_to_save_or_load
self.vector_store = None
self.build_vector_space()
def build_vector_space(self):
if self.vector_store is not None:
print("Warning: Vector store is already created.")
return
index = faiss.IndexFlatL2(self.model.get_embedding_dimension())
self.vector_store = FAISS(
embedding_function=self.model.get_embeddings,
index=index,
docstore=InMemoryDocstore(),
index_to_docstore_id={},
)
# TODO: Add Support for Cosine Similiarity
# Indexing documents
def add_docs(self, documents, ids):
if not self.vector_store:
raise ValueError(f"Build vector Space First")
self.vector_store.add_documents(documents=documents, ids=ids)
# Retrieval
def search_docs(self, query: str, k: int = 3, filter: dict = {}):
if not self.vector_store:
raise ValueError(f"Build vector Space First")
results = self.vector_store.similarity_search(query, k=k, filter=filter)
return results
# Retrieval with scores
def search_with_score(self, query: str, k: int = 3, filter: dict = {}):
if not self.vector_store:
raise ValueError(f"Build vector Space First")
results = self.vector_store.similarity_search_with_score(
query, k=k, filter=filter
)
return results
def save_local(self):
if not self.vector_store:
raise ValueError(f"Build vector Space First")
self.vector_store.save_local(self.file_path)
print("Index Saved")
def load_local(self):
self.vector_store = FAISS.load_local(
self.file_path,
self.model.get_embeddings,
allow_dangerous_deserialization=True,
)
print("Index Loaded")
class Controller:
# TODO: Implementation can be improved
def __init__(self, input_json: dict) -> None:
self.input_json = input_json
self.document_loader = self.get_loader()
self.model = self.get_model()
self.index_path = self.get_index_path()
# If index exists, load it; otherwise, load documents and build the index
if self.index_exists():
print(f"Index found, loading from {self.index_path}")
self.vector_space = VectorSpace(self.model, self.index_path)
self.vector_space.load_local()
else:
print("Index not found, building a new one")
self.load_documents()
self.vector_space = VectorSpace(self.model, self.index_path)
self.vector_space.add_docs(
self.document_loader.documents, self.document_loader.ids
)
self.vector_space.save_local()
def get_index_path(self):
files_path = self.input_json["files_path"]
model_name = self.input_json["model_name"]
if isinstance(files_path, list):
files_path_str = "".join(files_path)
elif isinstance(files_path, str):
files_path_str = files_path
else:
raise ValueError("Invalid files_path: Expected str or list of str")
unique_identifier = hashlib.md5(
(files_path_str + model_name).encode()
).hexdigest()
index_dir = INDEX_PATH
os.makedirs(index_dir, exist_ok=True)
path = os.path.join(index_dir, f"index_{unique_identifier}.faiss")
print(path)
return path
def index_exists(self):
return os.path.exists(self.index_path)
# vector Store Functions:
def add_docs(self):
if not self.vector_space:
raise ValueError(f"Build vector Space First")
self.vector_space.add_docs(
self.document_loader.documents, self.document_loader.ids
)
print("Documents Added!")
def search(self, query, k: int = 3, filter: dict = {}, with_score: bool = False):
if with_score:
results = self.vector_space.search_with_score(query, k, filter)
else:
results = self.vector_space.search_docs(query, k, filter)
return results
def get_loader(self):
input_file_type = find_key(self.input_json, "type")
files_path = find_key(self.input_json, "files_path")
if input_file_type == "PDF":
if not self.is_list(files_path):
raise ValueError(f"PDF files path should be List")
return Pdf(files_path)
elif input_file_type == "JSON":
if self.is_list(files_path):
raise ValueError(f"JSON file path should be str")
jq_schema = find_key(self.input_json, "jq_schema") or "."
content_key = find_key(self.input_json, "content_key")
metadata_keys = find_key(self.input_json, "metadata_keys") or []
return Json(files_path, jq_schema, content_key, metadata_keys)
elif input_file_type == "CSV":
if self.is_list(files_path):
raise ValueError(f"CSV file path should be str")
csv_args = find_key(self.input_json, "csv_args") or {}
source_column = find_key(self.input_json, "source_column")
return Csv(files_path, csv_args, source_column)
elif input_file_type == "TEXT":
if not self.is_list(files_path):
raise ValueError(f"TEXT files path should be List")
return Text(files_path)
elif input_file_type == "HTML":
if not self.is_list(files_path):
raise ValueError(f"HTML files path should be List")
return Html(files_path)
elif input_file_type == "IMAGE":
if self.is_list(files_path):
raise ValueError(f"IMAGE files path should be str")
extension = find_key(self.input_json, "extension", default=None)
return Image(files_path, extension)
else:
raise ValueError(f"Unsupported file type: {input_file_type}")
def get_model(self):
model_name = find_key(self.input_json, "model_name")
system_prompt = find_key(self.input_json, "system_prompt")
if model_name == "all-MiniLM-L6-v2":
return MiniLM_L6_v2(model_name, system_prompt)
elif model_name == "text-embedding-3-large":
return TextEmbedding3Large(model_name, system_prompt)
elif model_name == "WhereIsAI/UAE-Large-V1":
return UAE_Large_V1(model_name, system_prompt)
else:
raise ValueError(f"Unsupported model name: {model_name}")
# TODO: Add support for other models like CLIP
def load_documents(self):
if not self.document_loader:
print("Error Occurred")
exit(1)
self.document_loader.load()
print("Documents Loaded", len(self.document_loader.documents))
def is_list(self, input_value):
return isinstance(input_value, list)
# AVAILABLE MODELS and Their Dimensions
# all-MiniLM-L6-v2 (384)
# text-embedding-3-large (3072)
# WhereIsAI/UAE-Large-V1 (1024)
# NOTE
# Text, PDF and HTML suppport list of paths, Image support directory, Json and CSVs support single Files
# TODO: your files path here
input_json = {
"files_path": [f"{os.path.join(INDEX_PATH, 'Employee_handbook.pdf')}"],
"type": "PDF",
"system_prompt": pdf_prompt,
# "model_name": "all-MiniLM-L6-v2",
"model_name": "WhereIsAI/UAE-Large-V1",
}
controller = Controller(input_json=input_json)
def respond(
message: str,
history: list,
system_message: str,
max_tokens: int,
use_groq: bool = True,
use_history: bool = True,
max_history_length: int = 10 # Limit the number of historical messages
):
"""
Handles conversation with context, manages RAG flow, and streams responses.
Args:
message (str): User's query.
history (list): Conversation history (user and assistant responses).
system_message (str): System prompt for the assistant.
max_tokens (int): Maximum tokens for the response.
use_groq (bool): Whether to use Groq client or OpenAI API.
use_history (bool): Whether to include history in the prompt.
max_history_length (int): Maximum number of messages to keep in history.
Yields:
str: Streamed response from the model.
"""
# Manage system message
system_message = controller.model.system_prompt
print(controller.get_index_path())
messages = [{"role": "system", "content": system_message}]
# Include history if enabled
if use_history and history:
trimmed_history = history[-max_history_length:] # Trim history to last N messages
for user_msg, assistant_msg in trimmed_history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add the new user query
messages.append({"role": "user", "content": message})
# RAG - Retrieval
print("\nUser Query:")
print(message) # Print user query
results = controller.search(message, with_score=True, k=3)
relevant_pages = []
print("\nFetched Documents:")
for docs, score in results:
print(f"* [SIM={score:.3f}] {docs.page_content} [{docs.metadata}]")
relevant_pages.append(docs.page_content)
# Prepare context from relevant documents
context = "\n".join(relevant_pages)
if context.strip():
messages.append({"role": "system", "content": "Relevant documents: " + context})
# Response generation
if use_groq:
# Groq Client Setup
client = Groq(api_key=groq_api_key)
# Prepare the full prompt
prompt = "\n".join(f"{msg['role']}: {msg['content']}" for msg in messages)
# Stream response
response = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama-3.3-70b-versatile",
stream=True,
)
cumulative_response = "" # Keep track of the cumulative response
for chunk in response:
if hasattr(chunk, "choices") and chunk.choices:
delta = chunk.choices[0].delta # Access the `delta` attribute
token = getattr(delta, "content", "") # Get the 'content' field
if token: # If a token is received
cumulative_response += token
yield cumulative_response # Stream the cumulative response
else:
# Use OpenAI API for response generation
completion = openai.ChatCompletion.create(
model="gpt-4",
messages=messages,
max_tokens=max_tokens,
temperature=0.1,
top_p=0.1,
stream=True, # Enable streaming
)
response = ""
for chunk in completion:
token = chunk["choices"][0]["delta"].get("content", "")
response += token
yield response
# Increase the size of the Gradio Blocks
demo = gr.Blocks(fill_height=True)
with demo:
gr.Markdown("**Employee handbook assistant **")
gr.Markdown("‼Disclaimer:‼️")
chatbot = gr.ChatInterface(
respond,
examples=[
[
"what are the rules regarding staying in late and ordering food, on the company?"
],
],
title="Employee handbook assistant 👩‍⚕️",
)
if __name__ == "__main__":
# Set share = True for a public link that lasts around 72 hours (iff and only iff your machine is up and running this notebook)
demo.launch(debug=True)