Zengyf-CVer commited on
Commit
e1cb70c
·
1 Parent(s): 8ada2c0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -48
app.py CHANGED
@@ -1,7 +1,7 @@
1
- # Gradio YOLOv8 Det v1.1.1
2
  # 创建人:曾逸夫
3
  # 创建时间:2023-11-10
4
- # pip install gradio>=4.1.2
5
 
6
  import argparse
7
  import csv
@@ -31,10 +31,8 @@ from PIL import Image, ImageDraw, ImageFont
31
 
32
  from util.fonts_opt import is_fonts
33
 
34
- ROOT_PATH = sys.path[0] # 根目录
35
-
36
  # Gradio YOLOv8 Det版本
37
- GYD_VERSION = "Gradio YOLOv8 Det v1.1.1"
38
 
39
  # 文件后缀
40
  suffix_list = [".csv", ".yaml"]
@@ -50,6 +48,9 @@ GYD_TITLE = """
50
  <img src='https://pycver.gitee.io/ows-pics/imgs/gradio_yolov8_det_logo.png' alt='Simple Icons' ></a>
51
  <p align='center'>基于 Gradio 的 YOLOv8 通用计算机视觉演示系统</p><p align='center'>集成目标检测、图像分割和图像分类于一体,可自定义检测模型</p>
52
  </p>
 
 
 
53
  """
54
 
55
  GYD_SUB_TITLE = """
@@ -57,21 +58,25 @@ GYD_SUB_TITLE = """
57
  """
58
 
59
  EXAMPLES_DET = [
60
- ["./img_examples/bus.jpg", "yolov8s", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
61
- ["./img_examples/giraffe.jpg", "yolov8l", "cpu", 320, 0.5, 0.45, 100, "所有尺寸"],
62
- ["./img_examples/zidane.jpg", "yolov8m", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
63
- ["./img_examples/Millenial-at-work.jpg", "yolov8x", "cpu", 1280, 0.5, 0.5, 100, "所有尺寸"],
64
- ["./img_examples/bus.jpg", "yolov8s-seg", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
65
- ["./img_examples/Millenial-at-work.jpg", "yolov8x-seg", "cpu", 1280, 0.5, 0.5, 100, "所有尺寸"],]
66
-
67
 
68
  EXAMPLES_CLAS = [
69
- ["./img_examples/bus.jpg", "yolov8s-cls"],
70
- ["./img_examples/giraffe.jpg", "yolov8l-cls"],
71
- ["./img_examples/zidane.jpg", "yolov8m-cls"],
72
- ["./img_examples/Millenial-at-work.jpg", "yolov8m-cls"],
73
- ["./img_examples/bus.jpg", "yolov8m-cls"],
74
- ["./img_examples/Millenial-at-work.jpg", "yolov8m-cls"],]
 
 
 
 
 
75
 
76
  def parse_args(known=False):
77
  parser = argparse.ArgumentParser(description=GYD_VERSION)
@@ -93,7 +98,7 @@ def parse_args(known=False):
93
  parser.add_argument(
94
  "--cls_imgnet_name",
95
  "-cin",
96
- default="./cls_name/cls_imgnet_name_zh.yaml",
97
  type=str,
98
  help="cls ImageNet name",
99
  )
@@ -261,7 +266,7 @@ def seg_output(img_path, seg_mask_list, color_list, cls_list):
261
 
262
 
263
  # 目标检测和图像分割模型加载
264
- def model_loading(img_path, device_opt, conf, iou, infer_size, max_det, yolo_model="yolov8n.pt"):
265
  model = YOLO(yolo_model)
266
 
267
  results = model(source=img_path, device=device_opt, imgsz=infer_size, conf=conf, iou=iou, max_det=max_det)
@@ -293,7 +298,13 @@ def yolo_det_img(img_path, model_name, device_opt, infer_size, conf, iou, max_de
293
  cls_index_det_stat = [] # 1
294
 
295
  # 模型加载
296
- predict_results = model_loading(img_path, device_opt, conf, iou, infer_size, max_det, yolo_model=f"{model_name}.pt")
 
 
 
 
 
 
297
  # 检测参数
298
  xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist()
299
  conf_list = predict_results.boxes.conf.cpu().numpy().tolist()
@@ -341,7 +352,7 @@ def yolo_det_img(img_path, model_name, device_opt, infer_size, conf, iou, max_de
341
  h_obj = y1 - y0
342
  area_obj = w_obj * h_obj # 目标尺寸
343
 
344
- if (obj_size == "小目标" and area_obj > 0 and area_obj <= 32 ** 2):
345
  obj_cls_index = int(cls_list[i]) # 类别索引
346
  cls_index_det_stat.append(obj_cls_index)
347
 
@@ -354,7 +365,7 @@ def yolo_det_img(img_path, model_name, device_opt, infer_size, conf, iou, max_de
354
  score_det_stat.append(conf)
355
 
356
  area_obj_all.append(area_obj)
357
- elif (obj_size == "中目标" and area_obj > 32 ** 2 and area_obj <= 96 ** 2):
358
  obj_cls_index = int(cls_list[i]) # 类别索引
359
  cls_index_det_stat.append(obj_cls_index)
360
 
@@ -367,7 +378,7 @@ def yolo_det_img(img_path, model_name, device_opt, infer_size, conf, iou, max_de
367
  score_det_stat.append(conf)
368
 
369
  area_obj_all.append(area_obj)
370
- elif (obj_size == "大目标" and area_obj > 96 ** 2):
371
  obj_cls_index = int(cls_list[i]) # 类别索引
372
  cls_index_det_stat.append(obj_cls_index)
373
 
@@ -427,7 +438,7 @@ def yolo_cls_img(img_path, model_name):
427
 
428
  # 模型加载
429
  predict_results = model_cls_loading(img_path, yolo_model=f"{model_name}.pt")
430
-
431
  det_img = Image.open(img_path)
432
  clas_ratio_list = predict_results.probs.top5conf.tolist()
433
  clas_index_list = predict_results.probs.top5
@@ -442,7 +453,7 @@ def yolo_cls_img(img_path, model_name):
442
  clsDet_dict = Counter(clas_name_list)
443
  for k, v in clsDet_dict.items():
444
  clsRatio_dict[k] = clas_ratio_list[index_cls]
445
- index_cls+=1
446
 
447
  return det_img, clsRatio_dict
448
 
@@ -471,12 +482,10 @@ def main(args):
471
  model_cls_name_cp = model_cls_name.copy() # 类别名称
472
  model_cls_imagenet_name_cp = model_cls_imagenet_name.copy() # 类别名称
473
 
474
- custom_theme = gr.themes.Soft(primary_hue="blue").set(
475
- button_secondary_background_fill="*neutral_100",
476
- button_secondary_background_fill_hover="*neutral_200")
477
- custom_css = '''#disp_image {
478
- text-align: center; /* Horizontally center the content */
479
- }'''
480
 
481
  # ------------ Gradio Blocks ------------
482
  with gr.Blocks(theme=custom_theme, css=custom_css) as gyd:
@@ -506,26 +515,34 @@ def main(args):
506
  gr.ClearButton(inputs_img, value="清除")
507
  det_btn_img = gr.Button(value='检测', variant="primary")
508
  with gr.Row():
509
- gr.Examples(examples=EXAMPLES_DET,
510
- fn=yolo_det_img,
511
- inputs=[inputs_img, inputs_model, device_opt, inputs_size, input_conf, inputs_iou, max_det, obj_size],
512
- # outputs=[outputs_img, outputs_objSize, outputs_clsSize],
513
- cache_examples=False)
514
-
 
 
 
515
  with gr.TabItem("图像分类"):
516
  with gr.Row():
517
  inputs_img_cls = gr.Image(image_mode="RGB", type="filepath", label="原始图片")
518
  with gr.Row():
519
- inputs_model_cls = gr.Dropdown(choices=["yolov8n-cls", "yolov8s-cls", "yolov8l-cls", "yolov8m-cls", "yolov8x-cls"], value="yolov8s-cls", type="value", label="模型")
 
 
 
 
520
  with gr.Row():
521
  gr.ClearButton(inputs_img, value="清除")
522
  det_btn_img_cls = gr.Button(value='检测', variant="primary")
523
  with gr.Row():
524
- gr.Examples(examples=EXAMPLES_CLAS,
525
- fn=yolo_cls_img,
526
- inputs=[inputs_img_cls, inputs_model_cls],
527
- # outputs=[outputs_img_cls, outputs_ratio_cls],
528
- cache_examples=False)
 
529
 
530
  with gr.Column(scale=1):
531
  with gr.Tabs():
@@ -543,7 +560,6 @@ def main(args):
543
  with gr.Row():
544
  outputs_ratio_cls = gr.Label(label="图像分类结果")
545
 
546
-
547
  det_btn_img.click(fn=yolo_det_img,
548
  inputs=[
549
  inputs_img, inputs_model, device_opt, inputs_size, input_conf, inputs_iou, max_det,
@@ -551,9 +567,8 @@ def main(args):
551
  outputs=[outputs_img, outputs_objSize, outputs_clsSize])
552
 
553
  det_btn_img_cls.click(fn=yolo_cls_img,
554
- inputs=[
555
- inputs_img_cls, inputs_model_cls],
556
- outputs=[outputs_img_cls, outputs_ratio_cls])
557
 
558
  return gyd
559
 
 
1
+ # Gradio YOLOv8 Det v1.2.0
2
  # 创建人:曾逸夫
3
  # 创建时间:2023-11-10
4
+ # pip install gradio>=4.3.0
5
 
6
  import argparse
7
  import csv
 
31
 
32
  from util.fonts_opt import is_fonts
33
 
 
 
34
  # Gradio YOLOv8 Det版本
35
+ GYD_VERSION = "Gradio YOLOv8 Det v1.2.0"
36
 
37
  # 文件后缀
38
  suffix_list = [".csv", ".yaml"]
 
48
  <img src='https://pycver.gitee.io/ows-pics/imgs/gradio_yolov8_det_logo.png' alt='Simple Icons' ></a>
49
  <p align='center'>基于 Gradio 的 YOLOv8 通用计算机视觉演示系统</p><p align='center'>集成目标检测、图像分割和图像分类于一体,可自定义检测模型</p>
50
  </p>
51
+ <p align='center'>
52
+ <a href='https://gitee.com/CV_Lab/gradio-yolov8-det'><img src='https://gitee.com/CV_Lab/gradio-yolov8-det/widgets/widget_6.svg' alt='Fork me on Gitee'></img></a>
53
+ </p>
54
  """
55
 
56
  GYD_SUB_TITLE = """
 
58
  """
59
 
60
  EXAMPLES_DET = [
61
+ ["./img_examples/bus.jpg", "yolov8s", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
62
+ ["./img_examples/giraffe.jpg", "yolov8l", "cpu", 320, 0.5, 0.45, 100, "所有尺寸"],
63
+ ["./img_examples/zidane.jpg", "yolov8m", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
64
+ ["./img_examples/Millenial-at-work.jpg", "yolov8x", "cpu", 1280, 0.5, 0.5, 100, "所有尺寸"],
65
+ ["./img_examples/bus.jpg", "yolov8s-seg", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
66
+ ["./img_examples/Millenial-at-work.jpg", "yolov8x-seg", "cpu", 1280, 0.5, 0.5, 100, "所有尺寸"],]
 
67
 
68
  EXAMPLES_CLAS = [
69
+ ["./img_examples/img_clas/ILSVRC2012_val_00000008.JPEG", "yolov8s-cls"],
70
+ ["./img_examples/img_clas/ILSVRC2012_val_00000018.JPEG", "yolov8l-cls"],
71
+ ["./img_examples/img_clas/ILSVRC2012_val_00000023.JPEG", "yolov8m-cls"],
72
+ ["./img_examples/img_clas/ILSVRC2012_val_00000067.JPEG", "yolov8m-cls"],
73
+ ["./img_examples/img_clas/ILSVRC2012_val_00000077.JPEG", "yolov8m-cls"],
74
+ ["./img_examples/img_clas/ILSVRC2012_val_00000247.JPEG", "yolov8m-cls"],]
75
+
76
+ GYD_CSS = """#disp_image {
77
+ text-align: center; /* Horizontally center the content */
78
+ }"""
79
+
80
 
81
  def parse_args(known=False):
82
  parser = argparse.ArgumentParser(description=GYD_VERSION)
 
98
  parser.add_argument(
99
  "--cls_imgnet_name",
100
  "-cin",
101
+ default="./cls_name/cls_imagenet_name_zh.yaml",
102
  type=str,
103
  help="cls ImageNet name",
104
  )
 
266
 
267
 
268
  # 目标检测和图像分割模型加载
269
+ def model_det_loading(img_path, device_opt, conf, iou, infer_size, max_det, yolo_model="yolov8n.pt"):
270
  model = YOLO(yolo_model)
271
 
272
  results = model(source=img_path, device=device_opt, imgsz=infer_size, conf=conf, iou=iou, max_det=max_det)
 
298
  cls_index_det_stat = [] # 1
299
 
300
  # 模型加载
301
+ predict_results = model_det_loading(img_path,
302
+ device_opt,
303
+ conf,
304
+ iou,
305
+ infer_size,
306
+ max_det,
307
+ yolo_model=f"{model_name}.pt")
308
  # 检测参数
309
  xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist()
310
  conf_list = predict_results.boxes.conf.cpu().numpy().tolist()
 
352
  h_obj = y1 - y0
353
  area_obj = w_obj * h_obj # 目标尺寸
354
 
355
+ if (obj_size == obj_style[0] and area_obj > 0 and area_obj <= 32 ** 2):
356
  obj_cls_index = int(cls_list[i]) # 类别索引
357
  cls_index_det_stat.append(obj_cls_index)
358
 
 
365
  score_det_stat.append(conf)
366
 
367
  area_obj_all.append(area_obj)
368
+ elif (obj_size == obj_style[1] and area_obj > 32 ** 2 and area_obj <= 96 ** 2):
369
  obj_cls_index = int(cls_list[i]) # 类别索引
370
  cls_index_det_stat.append(obj_cls_index)
371
 
 
378
  score_det_stat.append(conf)
379
 
380
  area_obj_all.append(area_obj)
381
+ elif (obj_size == obj_style[2] and area_obj > 96 ** 2):
382
  obj_cls_index = int(cls_list[i]) # 类别索引
383
  cls_index_det_stat.append(obj_cls_index)
384
 
 
438
 
439
  # 模型加载
440
  predict_results = model_cls_loading(img_path, yolo_model=f"{model_name}.pt")
441
+
442
  det_img = Image.open(img_path)
443
  clas_ratio_list = predict_results.probs.top5conf.tolist()
444
  clas_index_list = predict_results.probs.top5
 
453
  clsDet_dict = Counter(clas_name_list)
454
  for k, v in clsDet_dict.items():
455
  clsRatio_dict[k] = clas_ratio_list[index_cls]
456
+ index_cls += 1
457
 
458
  return det_img, clsRatio_dict
459
 
 
482
  model_cls_name_cp = model_cls_name.copy() # 类别名称
483
  model_cls_imagenet_name_cp = model_cls_imagenet_name.copy() # 类别名称
484
 
485
+ custom_theme = gr.themes.Soft(primary_hue="blue").set(button_secondary_background_fill="*neutral_100",
486
+ button_secondary_background_fill_hover="*neutral_200")
487
+
488
+ custom_css = GYD_CSS
 
 
489
 
490
  # ------------ Gradio Blocks ------------
491
  with gr.Blocks(theme=custom_theme, css=custom_css) as gyd:
 
515
  gr.ClearButton(inputs_img, value="清除")
516
  det_btn_img = gr.Button(value='检测', variant="primary")
517
  with gr.Row():
518
+ gr.Examples(
519
+ examples=EXAMPLES_DET,
520
+ fn=yolo_det_img,
521
+ inputs=[
522
+ inputs_img, inputs_model, device_opt, inputs_size, input_conf, inputs_iou, max_det,
523
+ obj_size],
524
+ # outputs=[outputs_img, outputs_objSize, outputs_clsSize],
525
+ cache_examples=False)
526
+
527
  with gr.TabItem("图像分类"):
528
  with gr.Row():
529
  inputs_img_cls = gr.Image(image_mode="RGB", type="filepath", label="原始图片")
530
  with gr.Row():
531
+ inputs_model_cls = gr.Dropdown(choices=[
532
+ "yolov8n-cls", "yolov8s-cls", "yolov8l-cls", "yolov8m-cls", "yolov8x-cls"],
533
+ value="yolov8s-cls",
534
+ type="value",
535
+ label="模型")
536
  with gr.Row():
537
  gr.ClearButton(inputs_img, value="清除")
538
  det_btn_img_cls = gr.Button(value='检测', variant="primary")
539
  with gr.Row():
540
+ gr.Examples(
541
+ examples=EXAMPLES_CLAS,
542
+ fn=yolo_cls_img,
543
+ inputs=[inputs_img_cls, inputs_model_cls],
544
+ # outputs=[outputs_img_cls, outputs_ratio_cls],
545
+ cache_examples=False)
546
 
547
  with gr.Column(scale=1):
548
  with gr.Tabs():
 
560
  with gr.Row():
561
  outputs_ratio_cls = gr.Label(label="图像分类结果")
562
 
 
563
  det_btn_img.click(fn=yolo_det_img,
564
  inputs=[
565
  inputs_img, inputs_model, device_opt, inputs_size, input_conf, inputs_iou, max_det,
 
567
  outputs=[outputs_img, outputs_objSize, outputs_clsSize])
568
 
569
  det_btn_img_cls.click(fn=yolo_cls_img,
570
+ inputs=[inputs_img_cls, inputs_model_cls],
571
+ outputs=[outputs_img_cls, outputs_ratio_cls])
 
572
 
573
  return gyd
574