Spaces:
Running
Running
# Gradio YOLOv8 Det v1.2.1 | |
# 创建人:曾逸夫 | |
# 创建时间:2023-12-7 | |
# pip install gradio>=4.8.0 | |
# python gradio_yolov8_det_v1.py | |
import argparse | |
import csv | |
import random | |
import sys | |
from collections import Counter | |
from pathlib import Path | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
from matplotlib import font_manager | |
from ultralytics import YOLO | |
ROOT_PATH = sys.path[0] # 项目根目录 | |
# --------------------- 字体库 --------------------- | |
SimSun_path = f"{ROOT_PATH}/fonts/SimSun.ttf" # 宋体文件路径 | |
TimesNesRoman_path = f"{ROOT_PATH}/fonts/TimesNewRoman.ttf" # 新罗马字体文件路径 | |
# 宋体 | |
SimSun = font_manager.FontProperties(fname=SimSun_path, size=12) | |
# 新罗马字体 | |
TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12) | |
import yaml | |
from PIL import Image, ImageDraw, ImageFont | |
from util.fonts_opt import is_fonts | |
# Gradio YOLOv8 Det版本 | |
GYD_VERSION = "Gradio YOLOv8 Det v1.2.1" | |
# 文件后缀 | |
suffix_list = [".csv", ".yaml"] | |
# 字体大小 | |
FONTSIZE = 25 | |
# 目标尺寸 | |
obj_style = ["小目标", "中目标", "大目标"] | |
GYD_TITLE = """ | |
<p align='center'><a href='https://gitee.com/CV_Lab/gradio-yolov8-det'> | |
<img src='https://pycver.gitee.io/ows-pics/imgs/gradio_yolov8_det_logo.png' alt='Simple Icons' ></a> | |
<p align='center'>基于 Gradio 的 YOLOv8 通用计算机视觉演示系统</p><p align='center'>集成目标检测、图像分割和图像分类于一体,可自定义检测模型</p> | |
</p> | |
<p align='center'> | |
<a href='https://gitee.com/CV_Lab/gradio-yolov8-det'><img src='https://gitee.com/CV_Lab/gradio-yolov8-det/widgets/widget_6.svg' alt='Fork me on Gitee'></img></a> | |
</p> | |
""" | |
GYD_SUB_TITLE = """ | |
作者:曾逸夫,Gitee:https://gitee.com/PyCVer ,Github:https://github.com/Zengyf-CVer | |
""" | |
EXAMPLES_DET = [ | |
["./img_examples/bus.jpg", "yolov8s", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"], | |
["./img_examples/giraffe.jpg", "yolov8l", "cpu", 320, 0.5, 0.45, 100, "所有尺寸"], | |
["./img_examples/zidane.jpg", "yolov8m", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"], | |
["./img_examples/Millenial-at-work.jpg", "yolov8x", "cpu", 1280, 0.5, 0.5, 100, "所有尺寸"], | |
["./img_examples/bus.jpg", "yolov8s-seg", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"], | |
["./img_examples/Millenial-at-work.jpg", "yolov8x-seg", "cpu", 1280, 0.5, 0.5, 100, "所有尺寸"],] | |
EXAMPLES_CLAS = [ | |
["./img_examples/img_clas/ILSVRC2012_val_00000008.JPEG", "yolov8s-cls"], | |
["./img_examples/img_clas/ILSVRC2012_val_00000018.JPEG", "yolov8l-cls"], | |
["./img_examples/img_clas/ILSVRC2012_val_00000023.JPEG", "yolov8m-cls"], | |
["./img_examples/img_clas/ILSVRC2012_val_00000067.JPEG", "yolov8m-cls"], | |
["./img_examples/img_clas/ILSVRC2012_val_00000077.JPEG", "yolov8m-cls"], | |
["./img_examples/img_clas/ILSVRC2012_val_00000247.JPEG", "yolov8m-cls"],] | |
GYD_CSS = """#disp_image { | |
text-align: center; /* Horizontally center the content */ | |
}""" | |
def parse_args(known=False): | |
parser = argparse.ArgumentParser(description=GYD_VERSION) | |
parser.add_argument("--model_name", "-mn", default="yolov8s", type=str, help="model name") | |
parser.add_argument( | |
"--model_cfg", | |
"-mc", | |
default="./model_config/model_name_all.yaml", | |
type=str, | |
help="model config", | |
) | |
parser.add_argument( | |
"--cls_name", | |
"-cls", | |
default="./cls_name/cls_name_zh.yaml", | |
type=str, | |
help="cls name", | |
) | |
parser.add_argument( | |
"--cls_imgnet_name", | |
"-cin", | |
default="./cls_name/cls_imagenet_name_zh.yaml", | |
type=str, | |
help="cls ImageNet name", | |
) | |
parser.add_argument( | |
"--nms_conf", | |
"-conf", | |
default=0.5, | |
type=float, | |
help="model NMS confidence threshold", | |
) | |
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold") | |
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size") | |
parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num") | |
parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step") | |
parser.add_argument( | |
"--is_login", | |
"-isl", | |
action="store_true", | |
default=False, | |
help="is login", | |
) | |
parser.add_argument('--usr_pwd', | |
"-up", | |
nargs='+', | |
type=str, | |
default=["admin", "admin"], | |
help="user & password for login") | |
parser.add_argument( | |
"--is_share", | |
"-is", | |
action="store_true", | |
default=False, | |
help="is login", | |
) | |
parser.add_argument("--server_port", "-sp", default=7860, type=int, help="server port") | |
args = parser.parse_known_args()[0] if known else parser.parse_args() | |
return args | |
# yaml文件解析 | |
def yaml_parse(file_path): | |
return yaml.safe_load(open(file_path, encoding="utf-8").read()) | |
# yaml csv 文件解析 | |
def yaml_csv(file_path, file_tag): | |
file_suffix = Path(file_path).suffix | |
if file_suffix == suffix_list[0]: | |
# 模型名称 | |
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版 | |
elif file_suffix == suffix_list[1]: | |
# 模型名称 | |
file_names = yaml_parse(file_path).get(file_tag) # yaml版 | |
else: | |
print(f"{file_path}格式不正确!程序退出!") | |
sys.exit() | |
return file_names | |
# 检查网络连接 | |
def check_online(): | |
# 参考:https://github.com/ultralytics/yolov5/blob/master/utils/general.py | |
# Check internet connectivity | |
import socket | |
try: | |
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility | |
return True | |
except OSError: | |
return False | |
# 标签和边界框颜色设置 | |
def color_set(cls_num): | |
color_list = [] | |
for i in range(cls_num): | |
color = tuple(np.random.choice(range(256), size=3)) | |
color_list.append(color) | |
return color_list | |
# 随机生成浅色系或者深色系 | |
def random_color(cls_num, is_light=True): | |
color_list = [] | |
for i in range(cls_num): | |
color = ( | |
random.randint(0, 127) + int(is_light) * 128, | |
random.randint(0, 127) + int(is_light) * 128, | |
random.randint(0, 127) + int(is_light) * 128, | |
) | |
color_list.append(color) | |
return color_list | |
# 检测绘制 | |
def pil_draw(img, score_l, bbox_l, cls_l, cls_index_l, textFont, color_list): | |
img_pil = ImageDraw.Draw(img) | |
id = 0 | |
for score, (xmin, ymin, xmax, ymax), label, cls_index in zip(score_l, bbox_l, cls_l, cls_index_l): | |
img_pil.rectangle([xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2) # 边界框 | |
countdown_msg = f"{id}-{label} {score:.2f}" | |
# text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸 pillow 9.5.0 | |
# left, top, left + width, top + height | |
# 标签尺寸 pillow 10.0.0 | |
text_xmin, text_ymin, text_xmax, text_ymax = textFont.getbbox(countdown_msg) | |
# 标签背景 | |
img_pil.rectangle( | |
# (xmin, ymin, xmin + text_w, ymin + text_h), # pillow 9.5.0 | |
(xmin, ymin, xmin + text_xmax - text_xmin, ymin + text_ymax - text_ymin), # pillow 10.0.0 | |
fill=color_list[cls_index], | |
outline=color_list[cls_index], | |
) | |
# 标签 | |
img_pil.multiline_text( | |
(xmin, ymin), | |
countdown_msg, | |
fill=(0, 0, 0), | |
font=textFont, | |
align="center", | |
) | |
id += 1 | |
return img | |
# 绘制多边形 | |
def polygon_drawing(img_mask, canvas, color_seg): | |
# ------- RGB转BGR ------- | |
color_seg = list(color_seg) | |
color_seg[0], color_seg[2] = color_seg[2], color_seg[0] | |
color_seg = tuple(color_seg) | |
# 定义多边形的顶点 | |
pts = np.array(img_mask, dtype=np.int32) | |
# 多边形绘制 | |
cv2.drawContours(canvas, [pts], -1, color_seg, thickness=-1) | |
# 输出分割结果 | |
def seg_output(img_path, seg_mask_list, color_list, cls_list): | |
img = cv2.imread(img_path) | |
img_c = img.copy() | |
# w, h = img.shape[1], img.shape[0] | |
# 获取分割坐标 | |
for seg_mask, cls_index in zip(seg_mask_list, cls_list): | |
img_mask = [] | |
for i in range(len(seg_mask)): | |
# img_mask.append([seg_mask[i][0] * w, seg_mask[i][1] * h]) | |
img_mask.append([seg_mask[i][0], seg_mask[i][1]]) | |
polygon_drawing(img_mask, img_c, color_list[int(cls_index)]) # 绘制分割图形 | |
img_mask_merge = cv2.addWeighted(img, 0.3, img_c, 0.7, 0) # 合并图像 | |
return img_mask_merge | |
# 目标检测和图像分割模型加载 | |
def model_det_loading(img_path, device_opt, conf, iou, infer_size, max_det, yolo_model="yolov8n.pt"): | |
model = YOLO(yolo_model) | |
results = model(source=img_path, device=device_opt, imgsz=infer_size, conf=conf, iou=iou, max_det=max_det) | |
results = list(results)[0] | |
return results | |
# 图像分类模型加载 | |
def model_cls_loading(img_path, yolo_model="yolov8s-cls.pt"): | |
model = YOLO(yolo_model) | |
results = model(source=img_path) | |
results = list(results)[0] | |
return results | |
# YOLOv8图片检测函数 | |
def yolo_det_img(img_path, model_name, device_opt, infer_size, conf, iou, max_det, obj_size): | |
global model, model_name_tmp, device_tmp | |
s_obj, m_obj, l_obj = 0, 0, 0 | |
area_obj_all = [] # 目标面积 | |
score_det_stat = [] # 置信度统计 | |
bbox_det_stat = [] # 边界框统计 | |
cls_det_stat = [] # 类别数量统计 | |
cls_index_det_stat = [] # 1 | |
# 模型加载 | |
predict_results = model_det_loading(img_path, | |
device_opt, | |
conf, | |
iou, | |
infer_size, | |
max_det, | |
yolo_model=f"{model_name}.pt") | |
# 检测参数 | |
xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist() | |
conf_list = predict_results.boxes.conf.cpu().numpy().tolist() | |
cls_list = predict_results.boxes.cls.cpu().numpy().tolist() | |
# 颜色列表 | |
color_list = random_color(len(model_cls_name_cp), True) | |
# 图像分割 | |
if (model_name[-3:] == "seg"): | |
# masks_list = predict_results.masks.xyn | |
masks_list = predict_results.masks.xy | |
img_mask_merge = seg_output(img_path, masks_list, color_list, cls_list) | |
img = Image.fromarray(cv2.cvtColor(img_mask_merge, cv2.COLOR_BGRA2RGBA)) | |
else: | |
img = Image.open(img_path) | |
# 判断检测对象是否为空 | |
if (xyxy_list != []): | |
# ---------------- 加载字体 ---------------- | |
yaml_index = cls_name.index(".yaml") | |
cls_name_lang = cls_name[yaml_index - 2:yaml_index] | |
if cls_name_lang == "zh": | |
# 中文 | |
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE) | |
elif cls_name_lang in ["en", "ru", "es", "ar"]: | |
# 英文、俄语、西班牙语、阿拉伯语 | |
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE) | |
elif cls_name_lang == "ko": | |
# 韩语 | |
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE) | |
for i in range(len(xyxy_list)): | |
# ------------ 边框坐标 ------------ | |
x0 = int(xyxy_list[i][0]) | |
y0 = int(xyxy_list[i][1]) | |
x1 = int(xyxy_list[i][2]) | |
y1 = int(xyxy_list[i][3]) | |
# ---------- 加入目标尺寸 ---------- | |
w_obj = x1 - x0 | |
h_obj = y1 - y0 | |
area_obj = w_obj * h_obj # 目标尺寸 | |
if (obj_size == obj_style[0] and area_obj > 0 and area_obj <= 32 ** 2): | |
obj_cls_index = int(cls_list[i]) # 类别索引 | |
cls_index_det_stat.append(obj_cls_index) | |
obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
cls_det_stat.append(obj_cls) | |
bbox_det_stat.append((x0, y0, x1, y1)) | |
conf = float(conf_list[i]) # 置信度 | |
score_det_stat.append(conf) | |
area_obj_all.append(area_obj) | |
elif (obj_size == obj_style[1] and area_obj > 32 ** 2 and area_obj <= 96 ** 2): | |
obj_cls_index = int(cls_list[i]) # 类别索引 | |
cls_index_det_stat.append(obj_cls_index) | |
obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
cls_det_stat.append(obj_cls) | |
bbox_det_stat.append((x0, y0, x1, y1)) | |
conf = float(conf_list[i]) # 置信度 | |
score_det_stat.append(conf) | |
area_obj_all.append(area_obj) | |
elif (obj_size == obj_style[2] and area_obj > 96 ** 2): | |
obj_cls_index = int(cls_list[i]) # 类别索引 | |
cls_index_det_stat.append(obj_cls_index) | |
obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
cls_det_stat.append(obj_cls) | |
bbox_det_stat.append((x0, y0, x1, y1)) | |
conf = float(conf_list[i]) # 置信度 | |
score_det_stat.append(conf) | |
area_obj_all.append(area_obj) | |
elif (obj_size == "所有尺寸"): | |
obj_cls_index = int(cls_list[i]) # 类别索引 | |
cls_index_det_stat.append(obj_cls_index) | |
obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
cls_det_stat.append(obj_cls) | |
bbox_det_stat.append((x0, y0, x1, y1)) | |
conf = float(conf_list[i]) # 置信度 | |
score_det_stat.append(conf) | |
area_obj_all.append(area_obj) | |
det_img = pil_draw(img, score_det_stat, bbox_det_stat, cls_det_stat, cls_index_det_stat, textFont, color_list) | |
# -------------- 目标尺寸计算 -------------- | |
for i in range(len(area_obj_all)): | |
if (0 < area_obj_all[i] <= 32 ** 2): | |
s_obj = s_obj + 1 | |
elif (32 ** 2 < area_obj_all[i] <= 96 ** 2): | |
m_obj = m_obj + 1 | |
elif (area_obj_all[i] > 96 ** 2): | |
l_obj = l_obj + 1 | |
sml_obj_total = s_obj + m_obj + l_obj | |
objSize_dict = {} | |
objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)} | |
# ------------ 类别统计 ------------ | |
clsRatio_dict = {} | |
clsDet_dict = Counter(cls_det_stat) | |
clsDet_dict_sum = sum(clsDet_dict.values()) | |
for k, v in clsDet_dict.items(): | |
clsRatio_dict[k] = v / clsDet_dict_sum | |
gr.Info("图片检测成功!") | |
return det_img, objSize_dict, clsRatio_dict | |
else: | |
raise gr.Error("图片检测失败!") | |
# YOLOv8图片分类函数 | |
def yolo_cls_img(img_path, model_name): | |
# 模型加载 | |
predict_results = model_cls_loading(img_path, yolo_model=f"{model_name}.pt") | |
det_img = Image.open(img_path) | |
clas_ratio_list = predict_results.probs.top5conf.tolist() | |
clas_index_list = predict_results.probs.top5 | |
clas_name_list = [] | |
for i in clas_index_list: | |
# clas_name_list.append(predict_results.names[i]) | |
clas_name_list.append(model_cls_imagenet_name_cp[i]) | |
clsRatio_dict = {} | |
index_cls = 0 | |
clsDet_dict = Counter(clas_name_list) | |
for k, v in clsDet_dict.items(): | |
clsRatio_dict[k] = clas_ratio_list[index_cls] | |
index_cls += 1 | |
return det_img, clsRatio_dict | |
def main(args): | |
gr.close_all() | |
global model_cls_name_cp, model_cls_imagenet_name_cp, cls_name | |
nms_conf = args.nms_conf | |
nms_iou = args.nms_iou | |
model_name = args.model_name | |
model_cfg = args.model_cfg | |
cls_name = args.cls_name | |
cls_imagenet_name = args.cls_imgnet_name # ImageNet类别 | |
inference_size = args.inference_size | |
max_detnum = args.max_detnum | |
slider_step = args.slider_step | |
is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件 | |
model_names = yaml_csv(model_cfg, "model_names") # 模型名称 | |
model_cls_name = yaml_csv(cls_name, "model_cls_name") # 类别名称 | |
model_cls_imagenet_name = yaml_csv(cls_imagenet_name, "model_cls_name") # 类别名称 | |
model_cls_name_cp = model_cls_name.copy() # 类别名称 | |
model_cls_imagenet_name_cp = model_cls_imagenet_name.copy() # 类别名称 | |
custom_theme = gr.themes.Soft(primary_hue="blue").set(button_secondary_background_fill="*neutral_100", | |
button_secondary_background_fill_hover="*neutral_200") | |
custom_css = GYD_CSS | |
# ------------ Gradio Blocks ------------ | |
with gr.Blocks(theme=custom_theme, css=custom_css) as gyd: | |
with gr.Row(): | |
gr.Markdown(GYD_TITLE) | |
with gr.Row(): | |
gr.Markdown(GYD_SUB_TITLE) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Tabs(): | |
with gr.TabItem("目标检测与图像分割"): | |
with gr.Row(): | |
inputs_img = gr.Image(image_mode="RGB", type="filepath", label="原始图片") | |
with gr.Row(): | |
device_opt = gr.Radio(choices=["cpu", "0", "1", "2", "3"], value="cpu", label="设备") | |
with gr.Row(): | |
inputs_model = gr.Dropdown(choices=model_names, value=model_name, type="value", label="模型") | |
with gr.Accordion("高级设置", open=True): | |
with gr.Row(): | |
inputs_size = gr.Slider(320, 1600, step=1, value=inference_size, label="推理尺寸") | |
max_det = gr.Slider(1, 1000, step=1, value=max_detnum, label="最大检测数") | |
with gr.Row(): | |
input_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值") | |
inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值") | |
with gr.Row(): | |
obj_size = gr.Radio(choices=["所有尺寸", "小目标", "中目标", "大目标"], value="所有尺寸", label="目标尺寸") | |
with gr.Row(): | |
gr.ClearButton(inputs_img, value="清除") | |
det_btn_img = gr.Button(value='检测', variant="primary") | |
with gr.Row(): | |
gr.Examples( | |
examples=EXAMPLES_DET, | |
fn=yolo_det_img, | |
inputs=[ | |
inputs_img, inputs_model, device_opt, inputs_size, input_conf, inputs_iou, max_det, | |
obj_size], | |
# outputs=[outputs_img, outputs_objSize, outputs_clsSize], | |
cache_examples=False) | |
with gr.TabItem("图像分类"): | |
with gr.Row(): | |
inputs_img_cls = gr.Image(image_mode="RGB", type="filepath", label="原始图片") | |
with gr.Row(): | |
inputs_model_cls = gr.Dropdown(choices=[ | |
"yolov8n-cls", "yolov8s-cls", "yolov8l-cls", "yolov8m-cls", "yolov8x-cls"], | |
value="yolov8s-cls", | |
type="value", | |
label="模型") | |
with gr.Row(): | |
gr.ClearButton(inputs_img, value="清除") | |
det_btn_img_cls = gr.Button(value='检测', variant="primary") | |
with gr.Row(): | |
gr.Examples( | |
examples=EXAMPLES_CLAS, | |
fn=yolo_cls_img, | |
inputs=[inputs_img_cls, inputs_model_cls], | |
# outputs=[outputs_img_cls, outputs_ratio_cls], | |
cache_examples=False) | |
with gr.Column(scale=1): | |
with gr.Tabs(): | |
with gr.TabItem("目标检测与图像分割"): | |
with gr.Row(): | |
outputs_img = gr.Image(type="pil", label="检测图片") | |
with gr.Row(): | |
outputs_objSize = gr.Label(label="目标尺寸占比统计") | |
with gr.Row(): | |
outputs_clsSize = gr.Label(label="类别检测占比统计") | |
with gr.TabItem("图像分类"): | |
with gr.Row(): | |
outputs_img_cls = gr.Image(type="pil", label="检测图片") | |
with gr.Row(): | |
outputs_ratio_cls = gr.Label(label="图像分类结果") | |
with gr.Accordion("Gradio YOLOv8 Det 安装与使用教程"): | |
gr.Markdown( | |
"""## Gradio YOLOv8 Det 安装与使用教程 | |
```shell | |
conda create -n yolo python==3.8 | |
conda activate yolo # 进入环境 | |
git clone https://gitee.com/CV_Lab/gradio-yolov8-det.git | |
cd gradio-yolov8-det | |
pip install -r ./requirements.txt -U | |
``` | |
```shell | |
# 共享模式 | |
python gradio_yolov8_det_v1.py -is # 在浏览器中以共享模式打开,https://**.gradio.app/ | |
# 自定义模型配置 | |
python gradio_yolov8_det_v1.py -mc ./model_config/model_name_all.yaml | |
# 自定义下拉框默认模型名称 | |
python gradio_yolov8_det_v1.py -mn yolov8m | |
# 自定义类别名称 | |
python gradio_yolov8_det_v1.py -cls ./cls_name/cls_name_zh.yaml (目标检测与图像分割) | |
python gradio_yolov8_det_v1.py -cin ./cls_name/cls_imgnet_name_zh.yaml (图像分类) | |
# 自定义NMS置信度阈值 | |
python gradio_yolov8_det_v1.py -conf 0.8 | |
# 自定义NMS IoU阈值 | |
python gradio_yolov8_det_v1.py -iou 0.5 | |
# 设置推理尺寸,默认为640 | |
python gradio_yolov8_det_v1.py -isz 320 | |
# 设置最大检测数,默认为50 | |
python gradio_yolov8_det_v1.py -mdn 100 | |
# 设置滑块步长,默认为0.05 | |
python gradio_yolov8_det_v1.py -ss 0.01 | |
``` | |
""" | |
) | |
det_btn_img.click(fn=yolo_det_img, | |
inputs=[ | |
inputs_img, inputs_model, device_opt, inputs_size, input_conf, inputs_iou, max_det, | |
obj_size], | |
outputs=[outputs_img, outputs_objSize, outputs_clsSize]) | |
det_btn_img_cls.click(fn=yolo_cls_img, | |
inputs=[inputs_img_cls, inputs_model_cls], | |
outputs=[outputs_img_cls, outputs_ratio_cls]) | |
return gyd | |
if __name__ == "__main__": | |
args = parse_args() | |
gyd = main(args) | |
is_share = args.is_share | |
gyd.queue().launch( | |
inbrowser=True, # 自动打开默认浏览器 | |
share=is_share, # 项目共享,其他设备可以访问 | |
favicon_path="./icon/logo.ico", # 网页图标 | |
show_error=True, # 在浏览器控制台中显示错误信息 | |
quiet=True, # 禁止大多数打印语句 | |
) | |