Zengyf-CVer's picture
Update app.py
07d53b8
raw
history blame
23.9 kB
# Gradio YOLOv8 Det v1.2.1
# 创建人:曾逸夫
# 创建时间:2023-12-7
# pip install gradio>=4.8.0
# python gradio_yolov8_det_v1.py
import argparse
import csv
import random
import sys
from collections import Counter
from pathlib import Path
import cv2
import gradio as gr
import numpy as np
from matplotlib import font_manager
from ultralytics import YOLO
ROOT_PATH = sys.path[0] # 项目根目录
# --------------------- 字体库 ---------------------
SimSun_path = f"{ROOT_PATH}/fonts/SimSun.ttf" # 宋体文件路径
TimesNesRoman_path = f"{ROOT_PATH}/fonts/TimesNewRoman.ttf" # 新罗马字体文件路径
# 宋体
SimSun = font_manager.FontProperties(fname=SimSun_path, size=12)
# 新罗马字体
TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12)
import yaml
from PIL import Image, ImageDraw, ImageFont
from util.fonts_opt import is_fonts
# Gradio YOLOv8 Det版本
GYD_VERSION = "Gradio YOLOv8 Det v1.2.1"
# 文件后缀
suffix_list = [".csv", ".yaml"]
# 字体大小
FONTSIZE = 25
# 目标尺寸
obj_style = ["小目标", "中目标", "大目标"]
GYD_TITLE = """
<p align='center'><a href='https://gitee.com/CV_Lab/gradio-yolov8-det'>
<img src='https://pycver.gitee.io/ows-pics/imgs/gradio_yolov8_det_logo.png' alt='Simple Icons' ></a>
<p align='center'>基于 Gradio 的 YOLOv8 通用计算机视觉演示系统</p><p align='center'>集成目标检测、图像分割和图像分类于一体,可自定义检测模型</p>
</p>
<p align='center'>
<a href='https://gitee.com/CV_Lab/gradio-yolov8-det'><img src='https://gitee.com/CV_Lab/gradio-yolov8-det/widgets/widget_6.svg' alt='Fork me on Gitee'></img></a>
</p>
"""
GYD_SUB_TITLE = """
作者:曾逸夫,Gitee:https://gitee.com/PyCVer ,Github:https://github.com/Zengyf-CVer
"""
EXAMPLES_DET = [
["./img_examples/bus.jpg", "yolov8s", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
["./img_examples/giraffe.jpg", "yolov8l", "cpu", 320, 0.5, 0.45, 100, "所有尺寸"],
["./img_examples/zidane.jpg", "yolov8m", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
["./img_examples/Millenial-at-work.jpg", "yolov8x", "cpu", 1280, 0.5, 0.5, 100, "所有尺寸"],
["./img_examples/bus.jpg", "yolov8s-seg", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
["./img_examples/Millenial-at-work.jpg", "yolov8x-seg", "cpu", 1280, 0.5, 0.5, 100, "所有尺寸"],]
EXAMPLES_CLAS = [
["./img_examples/img_clas/ILSVRC2012_val_00000008.JPEG", "yolov8s-cls"],
["./img_examples/img_clas/ILSVRC2012_val_00000018.JPEG", "yolov8l-cls"],
["./img_examples/img_clas/ILSVRC2012_val_00000023.JPEG", "yolov8m-cls"],
["./img_examples/img_clas/ILSVRC2012_val_00000067.JPEG", "yolov8m-cls"],
["./img_examples/img_clas/ILSVRC2012_val_00000077.JPEG", "yolov8m-cls"],
["./img_examples/img_clas/ILSVRC2012_val_00000247.JPEG", "yolov8m-cls"],]
GYD_CSS = """#disp_image {
text-align: center; /* Horizontally center the content */
}"""
def parse_args(known=False):
parser = argparse.ArgumentParser(description=GYD_VERSION)
parser.add_argument("--model_name", "-mn", default="yolov8s", type=str, help="model name")
parser.add_argument(
"--model_cfg",
"-mc",
default="./model_config/model_name_all.yaml",
type=str,
help="model config",
)
parser.add_argument(
"--cls_name",
"-cls",
default="./cls_name/cls_name_zh.yaml",
type=str,
help="cls name",
)
parser.add_argument(
"--cls_imgnet_name",
"-cin",
default="./cls_name/cls_imagenet_name_zh.yaml",
type=str,
help="cls ImageNet name",
)
parser.add_argument(
"--nms_conf",
"-conf",
default=0.5,
type=float,
help="model NMS confidence threshold",
)
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num")
parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")
parser.add_argument(
"--is_login",
"-isl",
action="store_true",
default=False,
help="is login",
)
parser.add_argument('--usr_pwd',
"-up",
nargs='+',
type=str,
default=["admin", "admin"],
help="user & password for login")
parser.add_argument(
"--is_share",
"-is",
action="store_true",
default=False,
help="is login",
)
parser.add_argument("--server_port", "-sp", default=7860, type=int, help="server port")
args = parser.parse_known_args()[0] if known else parser.parse_args()
return args
# yaml文件解析
def yaml_parse(file_path):
return yaml.safe_load(open(file_path, encoding="utf-8").read())
# yaml csv 文件解析
def yaml_csv(file_path, file_tag):
file_suffix = Path(file_path).suffix
if file_suffix == suffix_list[0]:
# 模型名称
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版
elif file_suffix == suffix_list[1]:
# 模型名称
file_names = yaml_parse(file_path).get(file_tag) # yaml版
else:
print(f"{file_path}格式不正确!程序退出!")
sys.exit()
return file_names
# 检查网络连接
def check_online():
# 参考:https://github.com/ultralytics/yolov5/blob/master/utils/general.py
# Check internet connectivity
import socket
try:
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
return True
except OSError:
return False
# 标签和边界框颜色设置
def color_set(cls_num):
color_list = []
for i in range(cls_num):
color = tuple(np.random.choice(range(256), size=3))
color_list.append(color)
return color_list
# 随机生成浅色系或者深色系
def random_color(cls_num, is_light=True):
color_list = []
for i in range(cls_num):
color = (
random.randint(0, 127) + int(is_light) * 128,
random.randint(0, 127) + int(is_light) * 128,
random.randint(0, 127) + int(is_light) * 128,
)
color_list.append(color)
return color_list
# 检测绘制
def pil_draw(img, score_l, bbox_l, cls_l, cls_index_l, textFont, color_list):
img_pil = ImageDraw.Draw(img)
id = 0
for score, (xmin, ymin, xmax, ymax), label, cls_index in zip(score_l, bbox_l, cls_l, cls_index_l):
img_pil.rectangle([xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2) # 边界框
countdown_msg = f"{id}-{label} {score:.2f}"
# text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸 pillow 9.5.0
# left, top, left + width, top + height
# 标签尺寸 pillow 10.0.0
text_xmin, text_ymin, text_xmax, text_ymax = textFont.getbbox(countdown_msg)
# 标签背景
img_pil.rectangle(
# (xmin, ymin, xmin + text_w, ymin + text_h), # pillow 9.5.0
(xmin, ymin, xmin + text_xmax - text_xmin, ymin + text_ymax - text_ymin), # pillow 10.0.0
fill=color_list[cls_index],
outline=color_list[cls_index],
)
# 标签
img_pil.multiline_text(
(xmin, ymin),
countdown_msg,
fill=(0, 0, 0),
font=textFont,
align="center",
)
id += 1
return img
# 绘制多边形
def polygon_drawing(img_mask, canvas, color_seg):
# ------- RGB转BGR -------
color_seg = list(color_seg)
color_seg[0], color_seg[2] = color_seg[2], color_seg[0]
color_seg = tuple(color_seg)
# 定义多边形的顶点
pts = np.array(img_mask, dtype=np.int32)
# 多边形绘制
cv2.drawContours(canvas, [pts], -1, color_seg, thickness=-1)
# 输出分割结果
def seg_output(img_path, seg_mask_list, color_list, cls_list):
img = cv2.imread(img_path)
img_c = img.copy()
# w, h = img.shape[1], img.shape[0]
# 获取分割坐标
for seg_mask, cls_index in zip(seg_mask_list, cls_list):
img_mask = []
for i in range(len(seg_mask)):
# img_mask.append([seg_mask[i][0] * w, seg_mask[i][1] * h])
img_mask.append([seg_mask[i][0], seg_mask[i][1]])
polygon_drawing(img_mask, img_c, color_list[int(cls_index)]) # 绘制分割图形
img_mask_merge = cv2.addWeighted(img, 0.3, img_c, 0.7, 0) # 合并图像
return img_mask_merge
# 目标检测和图像分割模型加载
def model_det_loading(img_path, device_opt, conf, iou, infer_size, max_det, yolo_model="yolov8n.pt"):
model = YOLO(yolo_model)
results = model(source=img_path, device=device_opt, imgsz=infer_size, conf=conf, iou=iou, max_det=max_det)
results = list(results)[0]
return results
# 图像分类模型加载
def model_cls_loading(img_path, yolo_model="yolov8s-cls.pt"):
model = YOLO(yolo_model)
results = model(source=img_path)
results = list(results)[0]
return results
# YOLOv8图片检测函数
def yolo_det_img(img_path, model_name, device_opt, infer_size, conf, iou, max_det, obj_size):
global model, model_name_tmp, device_tmp
s_obj, m_obj, l_obj = 0, 0, 0
area_obj_all = [] # 目标面积
score_det_stat = [] # 置信度统计
bbox_det_stat = [] # 边界框统计
cls_det_stat = [] # 类别数量统计
cls_index_det_stat = [] # 1
# 模型加载
predict_results = model_det_loading(img_path,
device_opt,
conf,
iou,
infer_size,
max_det,
yolo_model=f"{model_name}.pt")
# 检测参数
xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist()
conf_list = predict_results.boxes.conf.cpu().numpy().tolist()
cls_list = predict_results.boxes.cls.cpu().numpy().tolist()
# 颜色列表
color_list = random_color(len(model_cls_name_cp), True)
# 图像分割
if (model_name[-3:] == "seg"):
# masks_list = predict_results.masks.xyn
masks_list = predict_results.masks.xy
img_mask_merge = seg_output(img_path, masks_list, color_list, cls_list)
img = Image.fromarray(cv2.cvtColor(img_mask_merge, cv2.COLOR_BGRA2RGBA))
else:
img = Image.open(img_path)
# 判断检测对象是否为空
if (xyxy_list != []):
# ---------------- 加载字体 ----------------
yaml_index = cls_name.index(".yaml")
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
if cls_name_lang == "zh":
# 中文
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
elif cls_name_lang in ["en", "ru", "es", "ar"]:
# 英文、俄语、西班牙语、阿拉伯语
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
elif cls_name_lang == "ko":
# 韩语
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
for i in range(len(xyxy_list)):
# ------------ 边框坐标 ------------
x0 = int(xyxy_list[i][0])
y0 = int(xyxy_list[i][1])
x1 = int(xyxy_list[i][2])
y1 = int(xyxy_list[i][3])
# ---------- 加入目标尺寸 ----------
w_obj = x1 - x0
h_obj = y1 - y0
area_obj = w_obj * h_obj # 目标尺寸
if (obj_size == obj_style[0] and area_obj > 0 and area_obj <= 32 ** 2):
obj_cls_index = int(cls_list[i]) # 类别索引
cls_index_det_stat.append(obj_cls_index)
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
cls_det_stat.append(obj_cls)
bbox_det_stat.append((x0, y0, x1, y1))
conf = float(conf_list[i]) # 置信度
score_det_stat.append(conf)
area_obj_all.append(area_obj)
elif (obj_size == obj_style[1] and area_obj > 32 ** 2 and area_obj <= 96 ** 2):
obj_cls_index = int(cls_list[i]) # 类别索引
cls_index_det_stat.append(obj_cls_index)
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
cls_det_stat.append(obj_cls)
bbox_det_stat.append((x0, y0, x1, y1))
conf = float(conf_list[i]) # 置信度
score_det_stat.append(conf)
area_obj_all.append(area_obj)
elif (obj_size == obj_style[2] and area_obj > 96 ** 2):
obj_cls_index = int(cls_list[i]) # 类别索引
cls_index_det_stat.append(obj_cls_index)
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
cls_det_stat.append(obj_cls)
bbox_det_stat.append((x0, y0, x1, y1))
conf = float(conf_list[i]) # 置信度
score_det_stat.append(conf)
area_obj_all.append(area_obj)
elif (obj_size == "所有尺寸"):
obj_cls_index = int(cls_list[i]) # 类别索引
cls_index_det_stat.append(obj_cls_index)
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
cls_det_stat.append(obj_cls)
bbox_det_stat.append((x0, y0, x1, y1))
conf = float(conf_list[i]) # 置信度
score_det_stat.append(conf)
area_obj_all.append(area_obj)
det_img = pil_draw(img, score_det_stat, bbox_det_stat, cls_det_stat, cls_index_det_stat, textFont, color_list)
# -------------- 目标尺寸计算 --------------
for i in range(len(area_obj_all)):
if (0 < area_obj_all[i] <= 32 ** 2):
s_obj = s_obj + 1
elif (32 ** 2 < area_obj_all[i] <= 96 ** 2):
m_obj = m_obj + 1
elif (area_obj_all[i] > 96 ** 2):
l_obj = l_obj + 1
sml_obj_total = s_obj + m_obj + l_obj
objSize_dict = {}
objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)}
# ------------ 类别统计 ------------
clsRatio_dict = {}
clsDet_dict = Counter(cls_det_stat)
clsDet_dict_sum = sum(clsDet_dict.values())
for k, v in clsDet_dict.items():
clsRatio_dict[k] = v / clsDet_dict_sum
gr.Info("图片检测成功!")
return det_img, objSize_dict, clsRatio_dict
else:
raise gr.Error("图片检测失败!")
# YOLOv8图片分类函数
def yolo_cls_img(img_path, model_name):
# 模型加载
predict_results = model_cls_loading(img_path, yolo_model=f"{model_name}.pt")
det_img = Image.open(img_path)
clas_ratio_list = predict_results.probs.top5conf.tolist()
clas_index_list = predict_results.probs.top5
clas_name_list = []
for i in clas_index_list:
# clas_name_list.append(predict_results.names[i])
clas_name_list.append(model_cls_imagenet_name_cp[i])
clsRatio_dict = {}
index_cls = 0
clsDet_dict = Counter(clas_name_list)
for k, v in clsDet_dict.items():
clsRatio_dict[k] = clas_ratio_list[index_cls]
index_cls += 1
return det_img, clsRatio_dict
def main(args):
gr.close_all()
global model_cls_name_cp, model_cls_imagenet_name_cp, cls_name
nms_conf = args.nms_conf
nms_iou = args.nms_iou
model_name = args.model_name
model_cfg = args.model_cfg
cls_name = args.cls_name
cls_imagenet_name = args.cls_imgnet_name # ImageNet类别
inference_size = args.inference_size
max_detnum = args.max_detnum
slider_step = args.slider_step
is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件
model_names = yaml_csv(model_cfg, "model_names") # 模型名称
model_cls_name = yaml_csv(cls_name, "model_cls_name") # 类别名称
model_cls_imagenet_name = yaml_csv(cls_imagenet_name, "model_cls_name") # 类别名称
model_cls_name_cp = model_cls_name.copy() # 类别名称
model_cls_imagenet_name_cp = model_cls_imagenet_name.copy() # 类别名称
custom_theme = gr.themes.Soft(primary_hue="blue").set(button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
custom_css = GYD_CSS
# ------------ Gradio Blocks ------------
with gr.Blocks(theme=custom_theme, css=custom_css) as gyd:
with gr.Row():
gr.Markdown(GYD_TITLE)
with gr.Row():
gr.Markdown(GYD_SUB_TITLE)
with gr.Row():
with gr.Column(scale=1):
with gr.Tabs():
with gr.TabItem("目标检测与图像分割"):
with gr.Row():
inputs_img = gr.Image(image_mode="RGB", type="filepath", label="原始图片")
with gr.Row():
device_opt = gr.Radio(choices=["cpu", "0", "1", "2", "3"], value="cpu", label="设备")
with gr.Row():
inputs_model = gr.Dropdown(choices=model_names, value=model_name, type="value", label="模型")
with gr.Accordion("高级设置", open=True):
with gr.Row():
inputs_size = gr.Slider(320, 1600, step=1, value=inference_size, label="推理尺寸")
max_det = gr.Slider(1, 1000, step=1, value=max_detnum, label="最大检测数")
with gr.Row():
input_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值")
inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值")
with gr.Row():
obj_size = gr.Radio(choices=["所有尺寸", "小目标", "中目标", "大目标"], value="所有尺寸", label="目标尺寸")
with gr.Row():
gr.ClearButton(inputs_img, value="清除")
det_btn_img = gr.Button(value='检测', variant="primary")
with gr.Row():
gr.Examples(
examples=EXAMPLES_DET,
fn=yolo_det_img,
inputs=[
inputs_img, inputs_model, device_opt, inputs_size, input_conf, inputs_iou, max_det,
obj_size],
# outputs=[outputs_img, outputs_objSize, outputs_clsSize],
cache_examples=False)
with gr.TabItem("图像分类"):
with gr.Row():
inputs_img_cls = gr.Image(image_mode="RGB", type="filepath", label="原始图片")
with gr.Row():
inputs_model_cls = gr.Dropdown(choices=[
"yolov8n-cls", "yolov8s-cls", "yolov8l-cls", "yolov8m-cls", "yolov8x-cls"],
value="yolov8s-cls",
type="value",
label="模型")
with gr.Row():
gr.ClearButton(inputs_img, value="清除")
det_btn_img_cls = gr.Button(value='检测', variant="primary")
with gr.Row():
gr.Examples(
examples=EXAMPLES_CLAS,
fn=yolo_cls_img,
inputs=[inputs_img_cls, inputs_model_cls],
# outputs=[outputs_img_cls, outputs_ratio_cls],
cache_examples=False)
with gr.Column(scale=1):
with gr.Tabs():
with gr.TabItem("目标检测与图像分割"):
with gr.Row():
outputs_img = gr.Image(type="pil", label="检测图片")
with gr.Row():
outputs_objSize = gr.Label(label="目标尺寸占比统计")
with gr.Row():
outputs_clsSize = gr.Label(label="类别检测占比统计")
with gr.TabItem("图像分类"):
with gr.Row():
outputs_img_cls = gr.Image(type="pil", label="检测图片")
with gr.Row():
outputs_ratio_cls = gr.Label(label="图像分类结果")
with gr.Accordion("Gradio YOLOv8 Det 安装与使用教程"):
gr.Markdown(
"""## Gradio YOLOv8 Det 安装与使用教程
```shell
conda create -n yolo python==3.8
conda activate yolo # 进入环境
git clone https://gitee.com/CV_Lab/gradio-yolov8-det.git
cd gradio-yolov8-det
pip install -r ./requirements.txt -U
```
```shell
# 共享模式
python gradio_yolov8_det_v1.py -is # 在浏览器中以共享模式打开,https://**.gradio.app/
# 自定义模型配置
python gradio_yolov8_det_v1.py -mc ./model_config/model_name_all.yaml
# 自定义下拉框默认模型名称
python gradio_yolov8_det_v1.py -mn yolov8m
# 自定义类别名称
python gradio_yolov8_det_v1.py -cls ./cls_name/cls_name_zh.yaml (目标检测与图像分割)
python gradio_yolov8_det_v1.py -cin ./cls_name/cls_imgnet_name_zh.yaml (图像分类)
# 自定义NMS置信度阈值
python gradio_yolov8_det_v1.py -conf 0.8
# 自定义NMS IoU阈值
python gradio_yolov8_det_v1.py -iou 0.5
# 设置推理尺寸,默认为640
python gradio_yolov8_det_v1.py -isz 320
# 设置最大检测数,默认为50
python gradio_yolov8_det_v1.py -mdn 100
# 设置滑块步长,默认为0.05
python gradio_yolov8_det_v1.py -ss 0.01
```
"""
)
det_btn_img.click(fn=yolo_det_img,
inputs=[
inputs_img, inputs_model, device_opt, inputs_size, input_conf, inputs_iou, max_det,
obj_size],
outputs=[outputs_img, outputs_objSize, outputs_clsSize])
det_btn_img_cls.click(fn=yolo_cls_img,
inputs=[inputs_img_cls, inputs_model_cls],
outputs=[outputs_img_cls, outputs_ratio_cls])
return gyd
if __name__ == "__main__":
args = parse_args()
gyd = main(args)
is_share = args.is_share
gyd.queue().launch(
inbrowser=True, # 自动打开默认浏览器
share=is_share, # 项目共享,其他设备可以访问
favicon_path="./icon/logo.ico", # 网页图标
show_error=True, # 在浏览器控制台中显示错误信息
quiet=True, # 禁止大多数打印语句
)