Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
"""Functions for estimating the best YOLO batch size to use a fraction of the available CUDA memory in PyTorch.""" | |
from copy import deepcopy | |
import numpy as np | |
import torch | |
from ultralytics.utils import DEFAULT_CFG, LOGGER, colorstr | |
from ultralytics.utils.torch_utils import profile | |
def check_train_batch_size(model, imgsz=640, amp=True): | |
""" | |
Check YOLO training batch size using the autobatch() function. | |
Args: | |
model (torch.nn.Module): YOLO model to check batch size for. | |
imgsz (int): Image size used for training. | |
amp (bool): If True, use automatic mixed precision (AMP) for training. | |
Returns: | |
(int): Optimal batch size computed using the autobatch() function. | |
""" | |
with torch.cuda.amp.autocast(amp): | |
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size | |
def autobatch(model, imgsz=640, fraction=0.60, batch_size=DEFAULT_CFG.batch): | |
""" | |
Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory. | |
Args: | |
model (torch.nn.module): YOLO model to compute batch size for. | |
imgsz (int, optional): The image size used as input for the YOLO model. Defaults to 640. | |
fraction (float, optional): The fraction of available CUDA memory to use. Defaults to 0.60. | |
batch_size (int, optional): The default batch size to use if an error is detected. Defaults to 16. | |
Returns: | |
(int): The optimal batch size. | |
""" | |
# Check device | |
prefix = colorstr("AutoBatch: ") | |
LOGGER.info(f"{prefix}Computing optimal batch size for imgsz={imgsz}") | |
device = next(model.parameters()).device # get model device | |
if device.type == "cpu": | |
LOGGER.info(f"{prefix}CUDA not detected, using default CPU batch-size {batch_size}") | |
return batch_size | |
if torch.backends.cudnn.benchmark: | |
LOGGER.info(f"{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}") | |
return batch_size | |
# Inspect CUDA memory | |
gb = 1 << 30 # bytes to GiB (1024 ** 3) | |
d = str(device).upper() # 'CUDA:0' | |
properties = torch.cuda.get_device_properties(device) # device properties | |
t = properties.total_memory / gb # GiB total | |
r = torch.cuda.memory_reserved(device) / gb # GiB reserved | |
a = torch.cuda.memory_allocated(device) / gb # GiB allocated | |
f = t - (r + a) # GiB free | |
LOGGER.info(f"{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free") | |
# Profile batch sizes | |
batch_sizes = [1, 2, 4, 8, 16] | |
try: | |
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes] | |
results = profile(img, model, n=3, device=device) | |
# Fit a solution | |
y = [x[2] for x in results if x] # memory [2] | |
p = np.polyfit(batch_sizes[: len(y)], y, deg=1) # first degree polynomial fit | |
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size) | |
if None in results: # some sizes failed | |
i = results.index(None) # first fail index | |
if b >= batch_sizes[i]: # y intercept above failure point | |
b = batch_sizes[max(i - 1, 0)] # select prior safe point | |
if b < 1 or b > 1024: # b outside of safe range | |
b = batch_size | |
LOGGER.info(f"{prefix}WARNING ⚠️ CUDA anomaly detected, using default batch-size {batch_size}.") | |
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted | |
LOGGER.info(f"{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅") | |
return b | |
except Exception as e: | |
LOGGER.warning(f"{prefix}WARNING ⚠️ error detected: {e}, using default batch-size {batch_size}.") | |
return batch_size | |