Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from ultralytics import YOLO | |
from ultralytics.cfg import get_cfg | |
from ultralytics.engine.exporter import Exporter | |
from ultralytics.models.yolo import classify, detect, segment | |
from ultralytics.utils import ASSETS, DEFAULT_CFG, WEIGHTS_DIR | |
CFG_DET = "yolov8n.yaml" | |
CFG_SEG = "yolov8n-seg.yaml" | |
CFG_CLS = "yolov8n-cls.yaml" # or 'squeezenet1_0' | |
CFG = get_cfg(DEFAULT_CFG) | |
MODEL = WEIGHTS_DIR / "yolov8n" | |
def test_func(*args): # noqa | |
"""Test function callback.""" | |
print("callback test passed") | |
def test_export(): | |
"""Test model exporting functionality.""" | |
exporter = Exporter() | |
exporter.add_callback("on_export_start", test_func) | |
assert test_func in exporter.callbacks["on_export_start"], "callback test failed" | |
f = exporter(model=YOLO(CFG_DET).model) | |
YOLO(f)(ASSETS) # exported model inference | |
def test_detect(): | |
"""Test object detection functionality.""" | |
overrides = {"data": "coco8.yaml", "model": CFG_DET, "imgsz": 32, "epochs": 1, "save": False} | |
CFG.data = "coco8.yaml" | |
CFG.imgsz = 32 | |
# Trainer | |
trainer = detect.DetectionTrainer(overrides=overrides) | |
trainer.add_callback("on_train_start", test_func) | |
assert test_func in trainer.callbacks["on_train_start"], "callback test failed" | |
trainer.train() | |
# Validator | |
val = detect.DetectionValidator(args=CFG) | |
val.add_callback("on_val_start", test_func) | |
assert test_func in val.callbacks["on_val_start"], "callback test failed" | |
val(model=trainer.best) # validate best.pt | |
# Predictor | |
pred = detect.DetectionPredictor(overrides={"imgsz": [64, 64]}) | |
pred.add_callback("on_predict_start", test_func) | |
assert test_func in pred.callbacks["on_predict_start"], "callback test failed" | |
result = pred(source=ASSETS, model=f"{MODEL}.pt") | |
assert len(result), "predictor test failed" | |
overrides["resume"] = trainer.last | |
trainer = detect.DetectionTrainer(overrides=overrides) | |
try: | |
trainer.train() | |
except Exception as e: | |
print(f"Expected exception caught: {e}") | |
return | |
Exception("Resume test failed!") | |
def test_segment(): | |
"""Test image segmentation functionality.""" | |
overrides = {"data": "coco8-seg.yaml", "model": CFG_SEG, "imgsz": 32, "epochs": 1, "save": False} | |
CFG.data = "coco8-seg.yaml" | |
CFG.imgsz = 32 | |
# YOLO(CFG_SEG).train(**overrides) # works | |
# Trainer | |
trainer = segment.SegmentationTrainer(overrides=overrides) | |
trainer.add_callback("on_train_start", test_func) | |
assert test_func in trainer.callbacks["on_train_start"], "callback test failed" | |
trainer.train() | |
# Validator | |
val = segment.SegmentationValidator(args=CFG) | |
val.add_callback("on_val_start", test_func) | |
assert test_func in val.callbacks["on_val_start"], "callback test failed" | |
val(model=trainer.best) # validate best.pt | |
# Predictor | |
pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]}) | |
pred.add_callback("on_predict_start", test_func) | |
assert test_func in pred.callbacks["on_predict_start"], "callback test failed" | |
result = pred(source=ASSETS, model=f"{MODEL}-seg.pt") | |
assert len(result), "predictor test failed" | |
# Test resume | |
overrides["resume"] = trainer.last | |
trainer = segment.SegmentationTrainer(overrides=overrides) | |
try: | |
trainer.train() | |
except Exception as e: | |
print(f"Expected exception caught: {e}") | |
return | |
Exception("Resume test failed!") | |
def test_classify(): | |
"""Test image classification functionality.""" | |
overrides = {"data": "imagenet10", "model": CFG_CLS, "imgsz": 32, "epochs": 1, "save": False} | |
CFG.data = "imagenet10" | |
CFG.imgsz = 32 | |
# YOLO(CFG_SEG).train(**overrides) # works | |
# Trainer | |
trainer = classify.ClassificationTrainer(overrides=overrides) | |
trainer.add_callback("on_train_start", test_func) | |
assert test_func in trainer.callbacks["on_train_start"], "callback test failed" | |
trainer.train() | |
# Validator | |
val = classify.ClassificationValidator(args=CFG) | |
val.add_callback("on_val_start", test_func) | |
assert test_func in val.callbacks["on_val_start"], "callback test failed" | |
val(model=trainer.best) | |
# Predictor | |
pred = classify.ClassificationPredictor(overrides={"imgsz": [64, 64]}) | |
pred.add_callback("on_predict_start", test_func) | |
assert test_func in pred.callbacks["on_predict_start"], "callback test failed" | |
result = pred(source=ASSETS, model=trainer.best) | |
assert len(result), "predictor test failed" | |