File size: 33,937 Bytes
7370e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
# Ultralytics YOLO 🚀, AGPL-3.0 license

import torch
import torch.nn as nn
import torch.nn.functional as F

from ultralytics.utils.metrics import OKS_SIGMA
from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
from ultralytics.utils.tal import RotatedTaskAlignedAssigner, TaskAlignedAssigner, dist2bbox, dist2rbox, make_anchors
from .metrics import bbox_iou, probiou
from .tal import bbox2dist


class VarifocalLoss(nn.Module):
    """

    Varifocal loss by Zhang et al.



    https://arxiv.org/abs/2008.13367.

    """

    def __init__(self):
        """Initialize the VarifocalLoss class."""
        super().__init__()

    @staticmethod
    def forward(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
        """Computes varfocal loss."""
        weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
        with torch.cuda.amp.autocast(enabled=False):
            loss = (
                (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction="none") * weight)
                .mean(1)
                .sum()
            )
        return loss


class FocalLoss(nn.Module):
    """Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""

    def __init__(self):
        """Initializer for FocalLoss class with no parameters."""
        super().__init__()

    @staticmethod
    def forward(pred, label, gamma=1.5, alpha=0.25):
        """Calculates and updates confusion matrix for object detection/classification tasks."""
        loss = F.binary_cross_entropy_with_logits(pred, label, reduction="none")
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = pred.sigmoid()  # prob from logits
        p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
        modulating_factor = (1.0 - p_t) ** gamma
        loss *= modulating_factor
        if alpha > 0:
            alpha_factor = label * alpha + (1 - label) * (1 - alpha)
            loss *= alpha_factor
        return loss.mean(1).sum()


class BboxLoss(nn.Module):
    """Criterion class for computing training losses during training."""

    def __init__(self, reg_max, use_dfl=False):
        """Initialize the BboxLoss module with regularization maximum and DFL settings."""
        super().__init__()
        self.reg_max = reg_max
        self.use_dfl = use_dfl

    def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
        """IoU loss."""
        weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
        iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)
        loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum

        # DFL loss
        if self.use_dfl:
            target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
            loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight
            loss_dfl = loss_dfl.sum() / target_scores_sum
        else:
            loss_dfl = torch.tensor(0.0).to(pred_dist.device)

        return loss_iou, loss_dfl

    @staticmethod
    def _df_loss(pred_dist, target):
        """

        Return sum of left and right DFL losses.



        Distribution Focal Loss (DFL) proposed in Generalized Focal Loss

        https://ieeexplore.ieee.org/document/9792391

        """
        tl = target.long()  # target left
        tr = tl + 1  # target right
        wl = tr - target  # weight left
        wr = 1 - wl  # weight right
        return (
            F.cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape) * wl
            + F.cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape) * wr
        ).mean(-1, keepdim=True)


class RotatedBboxLoss(BboxLoss):
    """Criterion class for computing training losses during training."""

    def __init__(self, reg_max, use_dfl=False):
        """Initialize the BboxLoss module with regularization maximum and DFL settings."""
        super().__init__(reg_max, use_dfl)

    def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
        """IoU loss."""
        weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
        iou = probiou(pred_bboxes[fg_mask], target_bboxes[fg_mask])
        loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum

        # DFL loss
        if self.use_dfl:
            target_ltrb = bbox2dist(anchor_points, xywh2xyxy(target_bboxes[..., :4]), self.reg_max)
            loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight
            loss_dfl = loss_dfl.sum() / target_scores_sum
        else:
            loss_dfl = torch.tensor(0.0).to(pred_dist.device)

        return loss_iou, loss_dfl


class KeypointLoss(nn.Module):
    """Criterion class for computing training losses."""

    def __init__(self, sigmas) -> None:
        """Initialize the KeypointLoss class."""
        super().__init__()
        self.sigmas = sigmas

    def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
        """Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
        d = (pred_kpts[..., 0] - gt_kpts[..., 0]).pow(2) + (pred_kpts[..., 1] - gt_kpts[..., 1]).pow(2)
        kpt_loss_factor = kpt_mask.shape[1] / (torch.sum(kpt_mask != 0, dim=1) + 1e-9)
        # e = d / (2 * (area * self.sigmas) ** 2 + 1e-9)  # from formula
        e = d / ((2 * self.sigmas).pow(2) * (area + 1e-9) * 2)  # from cocoeval
        return (kpt_loss_factor.view(-1, 1) * ((1 - torch.exp(-e)) * kpt_mask)).mean()


class v8DetectionLoss:
    """Criterion class for computing training losses."""

    def __init__(self, model, tal_topk=10):  # model must be de-paralleled
        """Initializes v8DetectionLoss with the model, defining model-related properties and BCE loss function."""
        device = next(model.parameters()).device  # get model device
        h = model.args  # hyperparameters

        m = model.model[-1]  # Detect() module
        self.bce = nn.BCEWithLogitsLoss(reduction="none")
        self.hyp = h
        self.stride = m.stride  # model strides
        self.nc = m.nc  # number of classes
        self.no = m.no
        self.reg_max = m.reg_max
        self.device = device

        self.use_dfl = m.reg_max > 1

        self.assigner = TaskAlignedAssigner(topk=tal_topk, num_classes=self.nc, alpha=0.5, beta=6.0)
        self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
        self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)

    def preprocess(self, targets, batch_size, scale_tensor):
        """Preprocesses the target counts and matches with the input batch size to output a tensor."""
        if targets.shape[0] == 0:
            out = torch.zeros(batch_size, 0, 5, device=self.device)
        else:
            i = targets[:, 0]  # image index
            _, counts = i.unique(return_counts=True)
            counts = counts.to(dtype=torch.int32)
            out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
            for j in range(batch_size):
                matches = i == j
                n = matches.sum()
                if n:
                    out[j, :n] = targets[matches, 1:]
            out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
        return out

    def bbox_decode(self, anchor_points, pred_dist):
        """Decode predicted object bounding box coordinates from anchor points and distribution."""
        if self.use_dfl:
            b, a, c = pred_dist.shape  # batch, anchors, channels
            pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
        return dist2bbox(pred_dist, anchor_points, xywh=False)

    def __call__(self, preds, batch):
        """Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
        loss = torch.zeros(3, device=self.device)  # box, cls, dfl
        feats = preds[1] if isinstance(preds, tuple) else preds
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1
        )

        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        batch_size = pred_scores.shape[0]
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # Targets
        targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
        targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
        gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
        mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)

        # Pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)

        _, target_bboxes, target_scores, fg_mask, _ = self.assigner(
            pred_scores.detach().sigmoid(),
            (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt,
        )

        target_scores_sum = max(target_scores.sum(), 1)

        # Cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # Bbox loss
        if fg_mask.sum():
            target_bboxes /= stride_tensor
            loss[0], loss[2] = self.bbox_loss(
                pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
            )

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.cls  # cls gain
        loss[2] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)


class v8SegmentationLoss(v8DetectionLoss):
    """Criterion class for computing training losses."""

    def __init__(self, model):  # model must be de-paralleled
        """Initializes the v8SegmentationLoss class, taking a de-paralleled model as argument."""
        super().__init__(model)
        self.overlap = model.args.overlap_mask

    def __call__(self, preds, batch):
        """Calculate and return the loss for the YOLO model."""
        loss = torch.zeros(4, device=self.device)  # box, cls, dfl
        feats, pred_masks, proto = preds if len(preds) == 3 else preds[1]
        batch_size, _, mask_h, mask_w = proto.shape  # batch size, number of masks, mask height, mask width
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1
        )

        # B, grids, ..
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_masks = pred_masks.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # Targets
        try:
            batch_idx = batch["batch_idx"].view(-1, 1)
            targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
            targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
            gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
            mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
        except RuntimeError as e:
            raise TypeError(
                "ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n"
                "This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
                "i.e. 'yolo train model=yolov8n-seg.pt data=coco8.yaml'.\nVerify your dataset is a "
                "correctly formatted 'segment' dataset using 'data=coco8-seg.yaml' "
                "as an example.\nSee https://docs.ultralytics.com/datasets/segment/ for help."
            ) from e

        # Pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)

        _, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
            pred_scores.detach().sigmoid(),
            (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt,
        )

        target_scores_sum = max(target_scores.sum(), 1)

        # Cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        if fg_mask.sum():
            # Bbox loss
            loss[0], loss[3] = self.bbox_loss(
                pred_distri,
                pred_bboxes,
                anchor_points,
                target_bboxes / stride_tensor,
                target_scores,
                target_scores_sum,
                fg_mask,
            )
            # Masks loss
            masks = batch["masks"].to(self.device).float()
            if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
                masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]

            loss[1] = self.calculate_segmentation_loss(
                fg_mask, masks, target_gt_idx, target_bboxes, batch_idx, proto, pred_masks, imgsz, self.overlap
            )

        # WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
        else:
            loss[1] += (proto * 0).sum() + (pred_masks * 0).sum()  # inf sums may lead to nan loss

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.box  # seg gain
        loss[2] *= self.hyp.cls  # cls gain
        loss[3] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    @staticmethod
    def single_mask_loss(

        gt_mask: torch.Tensor, pred: torch.Tensor, proto: torch.Tensor, xyxy: torch.Tensor, area: torch.Tensor

    ) -> torch.Tensor:
        """

        Compute the instance segmentation loss for a single image.



        Args:

            gt_mask (torch.Tensor): Ground truth mask of shape (n, H, W), where n is the number of objects.

            pred (torch.Tensor): Predicted mask coefficients of shape (n, 32).

            proto (torch.Tensor): Prototype masks of shape (32, H, W).

            xyxy (torch.Tensor): Ground truth bounding boxes in xyxy format, normalized to [0, 1], of shape (n, 4).

            area (torch.Tensor): Area of each ground truth bounding box of shape (n,).



        Returns:

            (torch.Tensor): The calculated mask loss for a single image.



        Notes:

            The function uses the equation pred_mask = torch.einsum('in,nhw->ihw', pred, proto) to produce the

            predicted masks from the prototype masks and predicted mask coefficients.

        """
        pred_mask = torch.einsum("in,nhw->ihw", pred, proto)  # (n, 32) @ (32, 80, 80) -> (n, 80, 80)
        loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
        return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).sum()

    def calculate_segmentation_loss(

        self,

        fg_mask: torch.Tensor,

        masks: torch.Tensor,

        target_gt_idx: torch.Tensor,

        target_bboxes: torch.Tensor,

        batch_idx: torch.Tensor,

        proto: torch.Tensor,

        pred_masks: torch.Tensor,

        imgsz: torch.Tensor,

        overlap: bool,

    ) -> torch.Tensor:
        """

        Calculate the loss for instance segmentation.



        Args:

            fg_mask (torch.Tensor): A binary tensor of shape (BS, N_anchors) indicating which anchors are positive.

            masks (torch.Tensor): Ground truth masks of shape (BS, H, W) if `overlap` is False, otherwise (BS, ?, H, W).

            target_gt_idx (torch.Tensor): Indexes of ground truth objects for each anchor of shape (BS, N_anchors).

            target_bboxes (torch.Tensor): Ground truth bounding boxes for each anchor of shape (BS, N_anchors, 4).

            batch_idx (torch.Tensor): Batch indices of shape (N_labels_in_batch, 1).

            proto (torch.Tensor): Prototype masks of shape (BS, 32, H, W).

            pred_masks (torch.Tensor): Predicted masks for each anchor of shape (BS, N_anchors, 32).

            imgsz (torch.Tensor): Size of the input image as a tensor of shape (2), i.e., (H, W).

            overlap (bool): Whether the masks in `masks` tensor overlap.



        Returns:

            (torch.Tensor): The calculated loss for instance segmentation.



        Notes:

            The batch loss can be computed for improved speed at higher memory usage.

            For example, pred_mask can be computed as follows:

                pred_mask = torch.einsum('in,nhw->ihw', pred, proto)  # (i, 32) @ (32, 160, 160) -> (i, 160, 160)

        """
        _, _, mask_h, mask_w = proto.shape
        loss = 0

        # Normalize to 0-1
        target_bboxes_normalized = target_bboxes / imgsz[[1, 0, 1, 0]]

        # Areas of target bboxes
        marea = xyxy2xywh(target_bboxes_normalized)[..., 2:].prod(2)

        # Normalize to mask size
        mxyxy = target_bboxes_normalized * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=proto.device)

        for i, single_i in enumerate(zip(fg_mask, target_gt_idx, pred_masks, proto, mxyxy, marea, masks)):
            fg_mask_i, target_gt_idx_i, pred_masks_i, proto_i, mxyxy_i, marea_i, masks_i = single_i
            if fg_mask_i.any():
                mask_idx = target_gt_idx_i[fg_mask_i]
                if overlap:
                    gt_mask = masks_i == (mask_idx + 1).view(-1, 1, 1)
                    gt_mask = gt_mask.float()
                else:
                    gt_mask = masks[batch_idx.view(-1) == i][mask_idx]

                loss += self.single_mask_loss(
                    gt_mask, pred_masks_i[fg_mask_i], proto_i, mxyxy_i[fg_mask_i], marea_i[fg_mask_i]
                )

            # WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
            else:
                loss += (proto * 0).sum() + (pred_masks * 0).sum()  # inf sums may lead to nan loss

        return loss / fg_mask.sum()


class v8PoseLoss(v8DetectionLoss):
    """Criterion class for computing training losses."""

    def __init__(self, model):  # model must be de-paralleled
        """Initializes v8PoseLoss with model, sets keypoint variables and declares a keypoint loss instance."""
        super().__init__(model)
        self.kpt_shape = model.model[-1].kpt_shape
        self.bce_pose = nn.BCEWithLogitsLoss()
        is_pose = self.kpt_shape == [17, 3]
        nkpt = self.kpt_shape[0]  # number of keypoints
        sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt
        self.keypoint_loss = KeypointLoss(sigmas=sigmas)

    def __call__(self, preds, batch):
        """Calculate the total loss and detach it."""
        loss = torch.zeros(5, device=self.device)  # box, cls, dfl, kpt_location, kpt_visibility
        feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1
        )

        # B, grids, ..
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_kpts = pred_kpts.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # Targets
        batch_size = pred_scores.shape[0]
        batch_idx = batch["batch_idx"].view(-1, 1)
        targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
        targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
        gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
        mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)

        # Pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)
        pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape))  # (b, h*w, 17, 3)

        _, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
            pred_scores.detach().sigmoid(),
            (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt,
        )

        target_scores_sum = max(target_scores.sum(), 1)

        # Cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # Bbox loss
        if fg_mask.sum():
            target_bboxes /= stride_tensor
            loss[0], loss[4] = self.bbox_loss(
                pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
            )
            keypoints = batch["keypoints"].to(self.device).float().clone()
            keypoints[..., 0] *= imgsz[1]
            keypoints[..., 1] *= imgsz[0]

            loss[1], loss[2] = self.calculate_keypoints_loss(
                fg_mask, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts
            )

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.pose  # pose gain
        loss[2] *= self.hyp.kobj  # kobj gain
        loss[3] *= self.hyp.cls  # cls gain
        loss[4] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    @staticmethod
    def kpts_decode(anchor_points, pred_kpts):
        """Decodes predicted keypoints to image coordinates."""
        y = pred_kpts.clone()
        y[..., :2] *= 2.0
        y[..., 0] += anchor_points[:, [0]] - 0.5
        y[..., 1] += anchor_points[:, [1]] - 0.5
        return y

    def calculate_keypoints_loss(

        self, masks, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts

    ):
        """

        Calculate the keypoints loss for the model.



        This function calculates the keypoints loss and keypoints object loss for a given batch. The keypoints loss is

        based on the difference between the predicted keypoints and ground truth keypoints. The keypoints object loss is

        a binary classification loss that classifies whether a keypoint is present or not.



        Args:

            masks (torch.Tensor): Binary mask tensor indicating object presence, shape (BS, N_anchors).

            target_gt_idx (torch.Tensor): Index tensor mapping anchors to ground truth objects, shape (BS, N_anchors).

            keypoints (torch.Tensor): Ground truth keypoints, shape (N_kpts_in_batch, N_kpts_per_object, kpts_dim).

            batch_idx (torch.Tensor): Batch index tensor for keypoints, shape (N_kpts_in_batch, 1).

            stride_tensor (torch.Tensor): Stride tensor for anchors, shape (N_anchors, 1).

            target_bboxes (torch.Tensor): Ground truth boxes in (x1, y1, x2, y2) format, shape (BS, N_anchors, 4).

            pred_kpts (torch.Tensor): Predicted keypoints, shape (BS, N_anchors, N_kpts_per_object, kpts_dim).



        Returns:

            (tuple): Returns a tuple containing:

                - kpts_loss (torch.Tensor): The keypoints loss.

                - kpts_obj_loss (torch.Tensor): The keypoints object loss.

        """
        batch_idx = batch_idx.flatten()
        batch_size = len(masks)

        # Find the maximum number of keypoints in a single image
        max_kpts = torch.unique(batch_idx, return_counts=True)[1].max()

        # Create a tensor to hold batched keypoints
        batched_keypoints = torch.zeros(
            (batch_size, max_kpts, keypoints.shape[1], keypoints.shape[2]), device=keypoints.device
        )

        # TODO: any idea how to vectorize this?
        # Fill batched_keypoints with keypoints based on batch_idx
        for i in range(batch_size):
            keypoints_i = keypoints[batch_idx == i]
            batched_keypoints[i, : keypoints_i.shape[0]] = keypoints_i

        # Expand dimensions of target_gt_idx to match the shape of batched_keypoints
        target_gt_idx_expanded = target_gt_idx.unsqueeze(-1).unsqueeze(-1)

        # Use target_gt_idx_expanded to select keypoints from batched_keypoints
        selected_keypoints = batched_keypoints.gather(
            1, target_gt_idx_expanded.expand(-1, -1, keypoints.shape[1], keypoints.shape[2])
        )

        # Divide coordinates by stride
        selected_keypoints /= stride_tensor.view(1, -1, 1, 1)

        kpts_loss = 0
        kpts_obj_loss = 0

        if masks.any():
            gt_kpt = selected_keypoints[masks]
            area = xyxy2xywh(target_bboxes[masks])[:, 2:].prod(1, keepdim=True)
            pred_kpt = pred_kpts[masks]
            kpt_mask = gt_kpt[..., 2] != 0 if gt_kpt.shape[-1] == 3 else torch.full_like(gt_kpt[..., 0], True)
            kpts_loss = self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area)  # pose loss

            if pred_kpt.shape[-1] == 3:
                kpts_obj_loss = self.bce_pose(pred_kpt[..., 2], kpt_mask.float())  # keypoint obj loss

        return kpts_loss, kpts_obj_loss


class v8ClassificationLoss:
    """Criterion class for computing training losses."""

    def __call__(self, preds, batch):
        """Compute the classification loss between predictions and true labels."""
        loss = torch.nn.functional.cross_entropy(preds, batch["cls"], reduction="mean")
        loss_items = loss.detach()
        return loss, loss_items


class v8OBBLoss(v8DetectionLoss):
    def __init__(self, model):
        """

        Initializes v8OBBLoss with model, assigner, and rotated bbox loss.



        Note model must be de-paralleled.

        """
        super().__init__(model)
        self.assigner = RotatedTaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
        self.bbox_loss = RotatedBboxLoss(self.reg_max - 1, use_dfl=self.use_dfl).to(self.device)

    def preprocess(self, targets, batch_size, scale_tensor):
        """Preprocesses the target counts and matches with the input batch size to output a tensor."""
        if targets.shape[0] == 0:
            out = torch.zeros(batch_size, 0, 6, device=self.device)
        else:
            i = targets[:, 0]  # image index
            _, counts = i.unique(return_counts=True)
            counts = counts.to(dtype=torch.int32)
            out = torch.zeros(batch_size, counts.max(), 6, device=self.device)
            for j in range(batch_size):
                matches = i == j
                n = matches.sum()
                if n:
                    bboxes = targets[matches, 2:]
                    bboxes[..., :4].mul_(scale_tensor)
                    out[j, :n] = torch.cat([targets[matches, 1:2], bboxes], dim=-1)
        return out

    def __call__(self, preds, batch):
        """Calculate and return the loss for the YOLO model."""
        loss = torch.zeros(3, device=self.device)  # box, cls, dfl
        feats, pred_angle = preds if isinstance(preds[0], list) else preds[1]
        batch_size = pred_angle.shape[0]  # batch size, number of masks, mask height, mask width
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1
        )

        # b, grids, ..
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_angle = pred_angle.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # targets
        try:
            batch_idx = batch["batch_idx"].view(-1, 1)
            targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"].view(-1, 5)), 1)
            rw, rh = targets[:, 4] * imgsz[0].item(), targets[:, 5] * imgsz[1].item()
            targets = targets[(rw >= 2) & (rh >= 2)]  # filter rboxes of tiny size to stabilize training
            targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
            gt_labels, gt_bboxes = targets.split((1, 5), 2)  # cls, xywhr
            mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
        except RuntimeError as e:
            raise TypeError(
                "ERROR ❌ OBB dataset incorrectly formatted or not a OBB dataset.\n"
                "This error can occur when incorrectly training a 'OBB' model on a 'detect' dataset, "
                "i.e. 'yolo train model=yolov8n-obb.pt data=dota8.yaml'.\nVerify your dataset is a "
                "correctly formatted 'OBB' dataset using 'data=dota8.yaml' "
                "as an example.\nSee https://docs.ultralytics.com/datasets/obb/ for help."
            ) from e

        # Pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri, pred_angle)  # xyxy, (b, h*w, 4)

        bboxes_for_assigner = pred_bboxes.clone().detach()
        # Only the first four elements need to be scaled
        bboxes_for_assigner[..., :4] *= stride_tensor
        _, target_bboxes, target_scores, fg_mask, _ = self.assigner(
            pred_scores.detach().sigmoid(),
            bboxes_for_assigner.type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt,
        )

        target_scores_sum = max(target_scores.sum(), 1)

        # Cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # Bbox loss
        if fg_mask.sum():
            target_bboxes[..., :4] /= stride_tensor
            loss[0], loss[2] = self.bbox_loss(
                pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
            )
        else:
            loss[0] += (pred_angle * 0).sum()

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.cls  # cls gain
        loss[2] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    def bbox_decode(self, anchor_points, pred_dist, pred_angle):
        """

        Decode predicted object bounding box coordinates from anchor points and distribution.



        Args:

            anchor_points (torch.Tensor): Anchor points, (h*w, 2).

            pred_dist (torch.Tensor): Predicted rotated distance, (bs, h*w, 4).

            pred_angle (torch.Tensor): Predicted angle, (bs, h*w, 1).



        Returns:

            (torch.Tensor): Predicted rotated bounding boxes with angles, (bs, h*w, 5).

        """
        if self.use_dfl:
            b, a, c = pred_dist.shape  # batch, anchors, channels
            pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
        return torch.cat((dist2rbox(pred_dist, pred_angle, anchor_points), pred_angle), dim=-1)

class v10DetectLoss:
    def __init__(self, model):
        self.one2many = v8DetectionLoss(model, tal_topk=10)
        self.one2one = v8DetectionLoss(model, tal_topk=1)
    
    def __call__(self, preds, batch):
        one2many = preds["one2many"]
        loss_one2many = self.one2many(one2many, batch)
        one2one = preds["one2one"]
        loss_one2one = self.one2one(one2one, batch)
        return loss_one2many[0] + loss_one2one[0], torch.cat((loss_one2many[1], loss_one2one[1]))