File size: 5,996 Bytes
7370e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""Base callbacks."""

from collections import defaultdict
from copy import deepcopy


# Trainer callbacks ----------------------------------------------------------------------------------------------------


def on_pretrain_routine_start(trainer):
    """Called before the pretraining routine starts."""
    pass


def on_pretrain_routine_end(trainer):
    """Called after the pretraining routine ends."""
    pass


def on_train_start(trainer):
    """Called when the training starts."""
    pass


def on_train_epoch_start(trainer):
    """Called at the start of each training epoch."""
    pass


def on_train_batch_start(trainer):
    """Called at the start of each training batch."""
    pass


def optimizer_step(trainer):
    """Called when the optimizer takes a step."""
    pass


def on_before_zero_grad(trainer):
    """Called before the gradients are set to zero."""
    pass


def on_train_batch_end(trainer):
    """Called at the end of each training batch."""
    pass


def on_train_epoch_end(trainer):
    """Called at the end of each training epoch."""
    pass


def on_fit_epoch_end(trainer):
    """Called at the end of each fit epoch (train + val)."""
    pass


def on_model_save(trainer):
    """Called when the model is saved."""
    pass


def on_train_end(trainer):
    """Called when the training ends."""
    pass


def on_params_update(trainer):
    """Called when the model parameters are updated."""
    pass


def teardown(trainer):
    """Called during the teardown of the training process."""
    pass


# Validator callbacks --------------------------------------------------------------------------------------------------


def on_val_start(validator):
    """Called when the validation starts."""
    pass


def on_val_batch_start(validator):
    """Called at the start of each validation batch."""
    pass


def on_val_batch_end(validator):
    """Called at the end of each validation batch."""
    pass


def on_val_end(validator):
    """Called when the validation ends."""
    pass


# Predictor callbacks --------------------------------------------------------------------------------------------------


def on_predict_start(predictor):
    """Called when the prediction starts."""
    pass


def on_predict_batch_start(predictor):
    """Called at the start of each prediction batch."""
    pass


def on_predict_batch_end(predictor):
    """Called at the end of each prediction batch."""
    pass


def on_predict_postprocess_end(predictor):
    """Called after the post-processing of the prediction ends."""
    pass


def on_predict_end(predictor):
    """Called when the prediction ends."""
    pass


# Exporter callbacks ---------------------------------------------------------------------------------------------------


def on_export_start(exporter):
    """Called when the model export starts."""
    pass


def on_export_end(exporter):
    """Called when the model export ends."""
    pass


default_callbacks = {
    # Run in trainer
    "on_pretrain_routine_start": [on_pretrain_routine_start],
    "on_pretrain_routine_end": [on_pretrain_routine_end],
    "on_train_start": [on_train_start],
    "on_train_epoch_start": [on_train_epoch_start],
    "on_train_batch_start": [on_train_batch_start],
    "optimizer_step": [optimizer_step],
    "on_before_zero_grad": [on_before_zero_grad],
    "on_train_batch_end": [on_train_batch_end],
    "on_train_epoch_end": [on_train_epoch_end],
    "on_fit_epoch_end": [on_fit_epoch_end],  # fit = train + val
    "on_model_save": [on_model_save],
    "on_train_end": [on_train_end],
    "on_params_update": [on_params_update],
    "teardown": [teardown],
    # Run in validator
    "on_val_start": [on_val_start],
    "on_val_batch_start": [on_val_batch_start],
    "on_val_batch_end": [on_val_batch_end],
    "on_val_end": [on_val_end],
    # Run in predictor
    "on_predict_start": [on_predict_start],
    "on_predict_batch_start": [on_predict_batch_start],
    "on_predict_postprocess_end": [on_predict_postprocess_end],
    "on_predict_batch_end": [on_predict_batch_end],
    "on_predict_end": [on_predict_end],
    # Run in exporter
    "on_export_start": [on_export_start],
    "on_export_end": [on_export_end],
}


def get_default_callbacks():
    """

    Return a copy of the default_callbacks dictionary with lists as default values.



    Returns:

        (defaultdict): A defaultdict with keys from default_callbacks and empty lists as default values.

    """
    return defaultdict(list, deepcopy(default_callbacks))


def add_integration_callbacks(instance):
    """

    Add integration callbacks from various sources to the instance's callbacks.



    Args:

        instance (Trainer, Predictor, Validator, Exporter): An object with a 'callbacks' attribute that is a dictionary

            of callback lists.

    """

    # Load HUB callbacks
    from .hub import callbacks as hub_cb

    callbacks_list = [hub_cb]

    # Load training callbacks
    if "Trainer" in instance.__class__.__name__:
        from .clearml import callbacks as clear_cb
        from .comet import callbacks as comet_cb
        from .dvc import callbacks as dvc_cb
        from .mlflow import callbacks as mlflow_cb
        from .neptune import callbacks as neptune_cb
        from .raytune import callbacks as tune_cb
        from .tensorboard import callbacks as tb_cb
        from .wb import callbacks as wb_cb

        callbacks_list.extend([clear_cb, comet_cb, dvc_cb, mlflow_cb, neptune_cb, tune_cb, tb_cb, wb_cb])

    # Add the callbacks to the callbacks dictionary
    for callbacks in callbacks_list:
        for k, v in callbacks.items():
            if v not in instance.callbacks[k]:
                instance.callbacks[k].append(v)