ZeeAI1's picture
Rename apps.py to app.py
675a674 verified
import os
import streamlit as st
import pdfplumber
from concurrent.futures import ThreadPoolExecutor
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from transformers import pipeline
# Set up the page configuration
st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="πŸ“„")
# Load the summarization pipeline model
@st.cache_resource
def load_summarization_pipeline():
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
return summarizer
summarizer = load_summarization_pipeline()
# Load the translation pipeline model
@st.cache_resource
def load_translation_pipeline(target_lang):
translation_model = f"Helsinki-NLP/opus-mt-en-{target_lang}"
translator = pipeline("translation", model=translation_model)
return translator
# Split text into manageable chunks
@st.cache_data
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
return chunks
# Initialize embedding function
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Create a FAISS vector store with embeddings, checking for empty chunks
@st.cache_resource
def load_or_create_vector_store(text_chunks):
if not text_chunks:
st.error("No valid text chunks found to create a vector store. Please check your PDF files.")
return None
vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function)
return vector_store
# Helper function to process a single PDF
def process_single_pdf(file_path):
text = ""
try:
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text += page_text
except Exception as e:
st.error(f"Failed to read PDF: {file_path} - {e}")
return text
# Function to load PDFs with progress display
def load_pdfs_with_progress(folder_path):
all_text = ""
pdf_files = [os.path.join(folder_path, filename) for filename in os.listdir(folder_path) if filename.endswith('.pdf')]
num_files = len(pdf_files)
if num_files == 0:
st.error("No PDF files found in the specified folder.")
st.session_state['vector_store'] = None
st.session_state['loading'] = False
return
# Title for the progress bar
st.markdown("### Loading data...")
progress_bar = st.progress(0)
status_text = st.empty()
processed_count = 0
for file_path in pdf_files:
result = process_single_pdf(file_path)
all_text += result
processed_count += 1
progress_percentage = int((processed_count / num_files) * 100)
progress_bar.progress(processed_count / num_files)
status_text.text(f"Loading documents: {progress_percentage}% completed")
progress_bar.empty() # Remove the progress bar when done
status_text.text("Document loading completed!") # Show completion message
if all_text:
text_chunks = get_text_chunks(all_text)
vector_store = load_or_create_vector_store(text_chunks)
st.session_state['vector_store'] = vector_store
else:
st.session_state['vector_store'] = None
st.session_state['loading'] = False # Mark loading as complete
# Generate summary based on the retrieved text
def generate_summary_with_huggingface(query, retrieved_text):
summarization_input = f"{query} Related information:{retrieved_text}"
max_input_length = 1024
summarization_input = summarization_input[:max_input_length]
summary = summarizer(summarization_input, max_length=500, min_length=50, do_sample=False)
return summary[0]["summary_text"]
# Translate the summary if a language is selected
def translate_summary(summary, target_lang):
if target_lang == "en":
return summary
translator = load_translation_pipeline(target_lang)
translated_summary = translator(summary, max_length=500)[0]["translation_text"]
return translated_summary
# Generate response for user query
def user_input(user_question, target_lang):
vector_store = st.session_state.get('vector_store')
if vector_store is None:
return "The app is still loading documents or no documents were successfully loaded."
docs = vector_store.similarity_search(user_question)
context_text = " ".join([doc.page_content for doc in docs])
summary = generate_summary_with_huggingface(user_question, context_text)
return translate_summary(summary, target_lang)
# Main function to run the Streamlit app
def main():
# Use HTML to style the title with a larger font size
st.markdown(
"""
<h1 style="font-size:30px; text-align: center;">
πŸ“„ JusticeCompass: Your AI-Powered Legal Navigator for Swift, Accurate Guidance.
</h1>
""",
unsafe_allow_html=True
)
# Start loading documents if not already loaded
if 'loading' not in st.session_state or st.session_state['loading']:
st.session_state['loading'] = True
load_pdfs_with_progress('documents1')
user_question = st.text_input("Ask a Question:", placeholder="Type your question here...")
# Language selection
target_lang = st.selectbox("Select Output Language:", options=["en", "ur", "es", "zh"], format_func=lambda lang: {"en": "English", "ur": "Urdu", "es": "Spanish", "zh": "Chinese"}[lang])
if st.session_state.get('loading', True):
st.info("The app is loading documents in the background. You can type your question now and submit once loading is complete.")
if st.button("Get Response"):
if not user_question:
st.warning("Please enter a question before submitting.")
else:
with st.spinner("Generating response..."):
answer = user_input(user_question, target_lang)
st.markdown(f"**πŸ€– AI:** {answer}")
if __name__ == "__main__":
main()