Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,168 @@
|
|
1 |
-
|
2 |
-
from sentence_transformers import SentenceTransformer
|
3 |
-
from datasets import load_dataset
|
4 |
-
import faiss
|
5 |
-
import numpy as np
|
6 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def main():
|
36 |
-
st.
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
if __name__ == "__main__":
|
49 |
main()
|
|
|
1 |
+
import os
|
|
|
|
|
|
|
|
|
2 |
import streamlit as st
|
3 |
+
import pdfplumber
|
4 |
+
from concurrent.futures import ThreadPoolExecutor
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from transformers import pipeline, M2M100ForConditionalGeneration, AutoTokenizer
|
9 |
|
10 |
+
# Set up the page configuration
|
11 |
+
st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="📄")
|
12 |
+
|
13 |
+
# Load the summarization pipeline model
|
14 |
+
@st.cache_resource
|
15 |
+
def load_summarization_pipeline():
|
16 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
17 |
+
return summarizer
|
18 |
+
|
19 |
+
summarizer = load_summarization_pipeline()
|
20 |
+
|
21 |
+
# Load the translation model
|
22 |
+
@st.cache_resource
|
23 |
+
def load_translation_model():
|
24 |
+
model = M2M100ForConditionalGeneration.from_pretrained("alirezamsh/small100")
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("alirezamsh/small100")
|
26 |
+
return model, tokenizer
|
27 |
+
|
28 |
+
translation_model, translation_tokenizer = load_translation_model()
|
29 |
+
|
30 |
+
# Define available languages for translation
|
31 |
+
LANGUAGES = {
|
32 |
+
"English": "en",
|
33 |
+
"French": "fr",
|
34 |
+
"Spanish": "es",
|
35 |
+
"Chinese": "zh",
|
36 |
+
"Hindi": "hi",
|
37 |
+
"Urdu": "ur",
|
38 |
+
}
|
39 |
+
|
40 |
+
# Split text into manageable chunks
|
41 |
+
@st.cache_data
|
42 |
+
def get_text_chunks(text):
|
43 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
44 |
+
chunks = text_splitter.split_text(text)
|
45 |
+
return chunks
|
46 |
+
|
47 |
+
# Initialize embedding function
|
48 |
+
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
49 |
+
|
50 |
+
# Create a FAISS vector store with embeddings
|
51 |
+
@st.cache_resource
|
52 |
+
def load_or_create_vector_store(text_chunks):
|
53 |
+
if not text_chunks:
|
54 |
+
st.error("No valid text chunks found to create a vector store. Please check your PDF files.")
|
55 |
+
return None
|
56 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function)
|
57 |
+
return vector_store
|
58 |
+
|
59 |
+
# Helper function to process a single PDF
|
60 |
+
def process_single_pdf(file_path):
|
61 |
+
text = ""
|
62 |
+
try:
|
63 |
+
with pdfplumber.open(file_path) as pdf:
|
64 |
+
for page in pdf.pages:
|
65 |
+
page_text = page.extract_text()
|
66 |
+
if page_text:
|
67 |
+
text += page_text
|
68 |
+
except Exception as e:
|
69 |
+
st.error(f"Failed to read PDF: {file_path} - {e}")
|
70 |
+
return text
|
71 |
+
|
72 |
+
# Load PDFs with progress display
|
73 |
+
def load_pdfs_with_progress(folder_path):
|
74 |
+
all_text = ""
|
75 |
+
pdf_files = [os.path.join(folder_path, filename) for filename in os.listdir(folder_path) if filename.endswith('.pdf')]
|
76 |
+
num_files = len(pdf_files)
|
77 |
+
|
78 |
+
if num_files == 0:
|
79 |
+
st.error("No PDF files found in the specified folder.")
|
80 |
+
st.session_state['vector_store'] = None
|
81 |
+
st.session_state['loading'] = False
|
82 |
+
return
|
83 |
+
|
84 |
+
st.markdown("### Loading data...")
|
85 |
+
progress_bar = st.progress(0)
|
86 |
+
status_text = st.empty()
|
87 |
+
|
88 |
+
processed_count = 0
|
89 |
+
|
90 |
+
for file_path in pdf_files:
|
91 |
+
result = process_single_pdf(file_path)
|
92 |
+
all_text += result
|
93 |
+
processed_count += 1
|
94 |
+
progress_percentage = int((processed_count / num_files) * 100)
|
95 |
+
progress_bar.progress(processed_count / num_files)
|
96 |
+
status_text.text(f"Loading documents: {progress_percentage}% completed")
|
97 |
+
|
98 |
+
progress_bar.empty()
|
99 |
+
status_text.text("Document loading completed!")
|
100 |
+
|
101 |
+
if all_text:
|
102 |
+
text_chunks = get_text_chunks(all_text)
|
103 |
+
vector_store = load_or_create_vector_store(text_chunks)
|
104 |
+
st.session_state['vector_store'] = vector_store
|
105 |
+
else:
|
106 |
+
st.session_state['vector_store'] = None
|
107 |
+
|
108 |
+
st.session_state['loading'] = False
|
109 |
+
|
110 |
+
# Generate summary based on retrieved text
|
111 |
+
def generate_summary_with_huggingface(query, retrieved_text):
|
112 |
+
summarization_input = f"{query} Related information:{retrieved_text}"
|
113 |
+
max_input_length = 1024
|
114 |
+
summarization_input = summarization_input[:max_input_length]
|
115 |
+
summary = summarizer(summarization_input, max_length=500, min_length=50, do_sample=False)
|
116 |
+
return summary[0]["summary_text"]
|
117 |
+
|
118 |
+
# Generate response for user query
|
119 |
+
def user_input(user_question):
|
120 |
+
vector_store = st.session_state.get('vector_store')
|
121 |
+
if vector_store is None:
|
122 |
+
return "The app is still loading documents or no documents were successfully loaded."
|
123 |
+
docs = vector_store.similarity_search(user_question)
|
124 |
+
context_text = " ".join([doc.page_content for doc in docs])
|
125 |
+
return generate_summary_with_huggingface(user_question, context_text)
|
126 |
+
|
127 |
+
# Translate text to selected language
|
128 |
+
def translate_text(text, target_lang):
|
129 |
+
translation_tokenizer.tgt_lang = target_lang
|
130 |
+
encoded_text = translation_tokenizer(text, return_tensors="pt")
|
131 |
+
generated_tokens = translation_model.generate(**encoded_text)
|
132 |
+
translated_text = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
133 |
+
return translated_text
|
134 |
+
|
135 |
+
# Main function to run the Streamlit app
|
136 |
def main():
|
137 |
+
st.markdown(
|
138 |
+
"""
|
139 |
+
<h1 style="font-size:30px; text-align: center;">
|
140 |
+
📄 JusticeCompass: Your AI-Powered Legal Navigator for Swift, Accurate Guidance.
|
141 |
+
</h1>
|
142 |
+
""",
|
143 |
+
unsafe_allow_html=True
|
144 |
+
)
|
145 |
+
|
146 |
+
if 'loading' not in st.session_state or st.session_state['loading']:
|
147 |
+
st.session_state['loading'] = True
|
148 |
+
load_pdfs_with_progress('documents1')
|
149 |
+
|
150 |
+
user_question = st.text_input("Ask a Question:", placeholder="Type your question here...")
|
151 |
+
|
152 |
+
# Display language selection dropdown
|
153 |
+
selected_language = st.selectbox("Select output language:", list(LANGUAGES.keys()))
|
154 |
+
|
155 |
+
if st.session_state.get('loading', True):
|
156 |
+
st.info("The app is loading documents in the background. You can type your question now and submit once loading is complete.")
|
157 |
+
|
158 |
+
# Only display "Get Response" button after user enters a question
|
159 |
+
if user_question:
|
160 |
+
if st.button("Get Response"):
|
161 |
+
with st.spinner("Generating response..."):
|
162 |
+
answer = user_input(user_question)
|
163 |
+
target_lang_code = LANGUAGES[selected_language]
|
164 |
+
translated_answer = translate_text(answer, target_lang_code)
|
165 |
+
st.markdown(f"**🤖 AI ({selected_language}):** {translated_answer}")
|
166 |
|
167 |
if __name__ == "__main__":
|
168 |
main()
|